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Large portions of this handbook are statistical in nature--numbers

pure and simple, or the results of analyses of statistical materials, or

discussions about and suggestions for solving problems which call for the

use and interpretation of statistics. A full use of this book--or any similar

collection of anthropometric information--will require some acquaintance

with the language of statistics and some skill in extracting from the wealth

of material presented here--both explicitly and implicitly--that which

is most relevant to a given problem.

Most users of this handbook already have such an acquaintance and,

in varying degrees, such a skill. Nonetheless, it seems appropriate to

review the statistical concepts which occur over and over again in this

book and to touch on some of the statistical problems which typically con-

front the individuals for whom this book was prepared. This we shall do in

this chapter.

The statistical concepts discussed here will be few in number and,

in the main, these few will be discussed within the context of the material

included in this book and the use of this material in design problems.

Initially, we shall define the basic univariate statistical measures:

averages, measures of variability, and percentiles. The relationship between

percentiles and mean-standard deviation combinations will be explored and

tables detailing this relationship will be presented.

A brief section on the interrelationships among anthropometric vari-

ables will deal with the simple bivariate and multivariate statistics.

These statistics will include the correlation coefficient as a measure

of the intensity of the relationship between two variables, the regression

equation as a technique for predicting or estimating the value of one dimen-

sion on the basis of one or more other anthropometric variables, and the

standard error of estimate as a measure of the accuracy of such estimates.

Our discussion will center on these statistics as they relate to pairs

of variables, but brief com_nents will be included about the statistics

as they apply to combinations of three, four, or more variables. An analysis

of the distribution of almost 8,000 correlation coefficients from the Air

Force Women's Survey of 1968 is included to provide some insight into whe-

ther--and to what extent--such coefficients tend to be large or small.
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The "normal" distribution will be discussed as a mathematical model
for most anthropometric data. The use of this model in the univariate ease
will have been anticipated in our discussion of the relationship between
the mean, the standard deviation, and the percentiles. Use of the model
in dealing with pairs of variables will be illustrated with artificial
bivariate frequency tables, constant-probability ellipses, and problems
related to the proportions of potential users disaccommodatedin bivariate
designs.

This chapter
"percentile men",
body size data.

will conclude with brief discussions of sampling errors,
and an example of the use of Monte Carlo methods with

The Basic Statistical Measures: One Variable at a Time

We begin with those statistics which--in vast numbers--constitute

Volume II of this handbook and which appear as well throughout this volume:

averages, measures of variability, and percentiles.

Averages: the mean and the median

Most con_non of all the statistical concepts is the notion of an

average, a statistic, which is in some sense representative of an entire set

of data. Of the many types of averages that have been defined, only two need

concern us--the arithmetic mean and the median.

The arithmetic mean is probably the oldest and certainly the most

widely used of the averages. So widespread is this use that the arithmetic

mean is often not specified as such, but is referred to simply as the "mean"

or the "average." Unless an average is otherwise specified, it is usually

safe--particularly in the field of anthropometry--to assume it is the arith-

metic mean. Similarly, the term "to average" usually signifies, to layman

and professional alike, the act of computing the arithmetic mean. The unmodi-

fied term "mean" is used in the tables of this handbook, as Table i illu-

strates.

The arithmetic mean of

values divided by the number

the mean of nine values:

a set of data is defined as the sum of these

of values. Thus, for example, to determine

5,2,8,-4,4,1,5,1,5

we add them:

Z X = 5+2+8+(-4)+4+1+5+1+5 = 27

We then divide the sum (27) by the number of values:

Mean =X = I X/N = 27/9 = 3.0
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We have used X here to represent the set of individual data values and

N to represent the number of data or sample size. We will use these notations

often. Note also the use of _, the upper case Greek letter _, to repre-

sent the idea of "the sum of" whatever follows.

To find the mean weight of the 2,420 subjects in the 1967 USAF survey

of flying personnel, we might add up all of these weights, obtaining a

total of 420,088 pounds, and divide this total by the number of subjects.

Sum of Weights _ 4209088

Mean Weight = Number of Subjects 2420 = 173.6 pounds

The mean value is usually designated in tables and formulas by X,

M, or _ . When several sets of data a_e c_nsi_ered together, their mean

values may be denoted by X, Y, Z, or XI, X2, X3, or Mx, My, Mz, or some
similar variation of the usual symbols. In computer printouts, notations

such as M(X), M(Y) or M(1), M(2) are often used because of the limited

set of symbols available on most printers.

The median is, after the arithmetic mean, the most important average.

The median of a set of values is formally defined as the value in the middle

when the values are arranged in numerical order, or, equivalently, the

value located at a point where as many values fall below it as fall above

it. Arranging the nine values we have just considered in order by size,

we get:

-4,1,1,2,4,5,5,5,8.

Since the middle value is the fifth one from either end, the median of

the group is 4.

The median is also the 50th percentile--a concept we shall soon define

--and is listed among the percentiles in Volume II and throughout this

handbook. From Table i, we note that the median stature of the stewardesses

was 65.4 inches. The cormnents we shall make about the computation of percen-

tiles apply equally to the computation of the median.

For most anthropometric data--and for all types of data for which

the normal distribution is a reasonable model--the mean and the median

tend to be almost equal. The median of the USAF '67 flying personnel weights

is 172.4 pounds, a trifle lower than the 173.6 pound value we obtained

for the mean. This difference of scarcely more than a pound probably repre-

sents the most significant difference to be found among our mean/median

data for these men. The mean and the median for the total height (stature)

of these fliers--statistically a much more typical set of data--were 69.82

inches and 69.78 inches respectively. Here the mean is a mere twenty-fifth

of an inch larger than the median. Other mean/median comparisons can be

made using the values in Table I. There are, it is true, a few anthropomet-

ric variables for which this level of close agreement between the mean

and the median does not exist. This lack of agreement will be most substan-

tial for age and skinfold measures, variables not directly related to basic
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design problems. For most sets of data, we have reported the mean and,

as the 50th percentile, the median.

In addition to the mean and the median, there are two averages which,

it can be argued, are more logically related to design problems: the mode

and the mid-range value. The mode is defined as the most frequently occurring

value in a set of data and the mid-range as the average of the maximum

and minimum values. We have included neither of these averages here for

two reasons. Both statistics, when computed on large sets of continuous

data; are highly dependent on the precise method of computation and editing

and are highly sensitive to minor variations in measurement techniques

and sample selection. In addition, whenever the normal probability model

is appropriate, the mode, the mid-range, the mean and the median are all

theoretically equal. If, then, all four of these averages are, in theory,

equal, our choice among them is logically the one we can determine most

accurately from a sample of a given size. On this basis, the arithmetic

mean is clearly the preferred statistic.

None of these averages--considered by itself--has great usefulness

in design problems. It is true, of course, that there are more men of aver-

age height than of any other particular height, but it is equally true that

most men are shorter than average or taller than average, some of them

by small amounts and others by considerable ones. Along with our averages,

we need statistical measures which measure and describe the variations,

large and small, up and down from the average value. These are discussed

next.

Measures of Variability: the Standard Deviation and the Coefficient
of Variation

A pioneer in the field of statistics, Sir Francis Galton, wrote years

ago that "it is difficult to understand why statisticians con_nonly limit

their interests to averages. Their souls seem as dull to the charm of variety

as that of a native of one of our flat English counties whose retrospect

of Switzerland was that_ if its mountains could be thrown into its lakes_

two nuisances could be got rid of at once." Basic to virtually all design

problems is the fact that mankind is far more like Switzerland than a

flat English county, and that, whatever the charms of variety may be, we

need statistics to quantify this variety.

The standard deviation is virtually the sole measure of variability

of concern to us. The coefficient of variation is also of considerable

importance, but this statistic, as we shall see, is simply a restatement

of the standard deviation as a percent of the mean.

The standard deviation for a set of data can be obtained by the follow-

ing sequence of steps:

a. compute the mean value: (5);

b. compute the deviation of each value from the mean: (X-X);
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c. square these deviations: (X-X)2;

d. obtain the mean of these squares: Z (X-_)2/N;

e. compute the square root of this quantity.

The- value at this last step is the standard deviation. Stated as

a formula*:

Standard deviation _(X-X)

2

= /N

To compute the standard deviation of the nine values we have just

averaged (5,2,8,-4,4,1,5,1,5), we follow this sequence of steps:

a. we already have X = 3

b. the deviations are 2,-1,5,-7,1,-2,2,-2,2

c. the squared deviations are 4,1,25,49,1,4,4,4,4

d. their mean value is (4+i+'''+4)/9 = 96/9 = 10.7

e. and the square root of 10.7 = 3.26

The sequence of steps usually used to compute the standard deviation

differs from that just described, but is mathematically equivalent and

gives identical results.

The standard deviation is commonly denoted either by the initials

SD or by o, the lower case Greek letter sigma, with, if necessary, suit-

able subscripts. The use of o is sufficiently general so that the word

"sigma" itself is sometimes used to denote the standard deviation. In Table

I, the standard deviation is the second of the statistics, listed in the

columns headed "STD DEV".

The way the standard deviation relates to the distribution of a set

of data is illustrated by the four graphs in Figure i. The first of these

graphs represents the statures (total heights) of all the women measured

in the Air Force Women's survey of 1968. The mean of these heights is 63.82

inches and the standard deviation is 2.36 inches.

The three other graphs also represent the statures of women measured

in this survey, but correspond to subgroups chosen on the basis of each

woman being of average value in a second measurement: weight, sitting height,

or cervicale height. Because of the relationships between stature and the

other measurements, the women in these subgroups are less variable in their

heights and the standard deviations decrease progressively as we go from

curve (a) to curve (d). The standard deviation for the total series was

2.36 inches as we have already noted; the other standard deviations are,

in order, 2.00 inches, 1.42 inches, and 0.50 inches. The mean value in

each case remains 63.82 inches.

*Sometimes N-I or N-I.5 is used in place of N in this formula. When the

standard deviation is considered as a descriptive statistic, the proper

divisor is N. When the value of N is large, it makes little difference

which divisor is used. The formula given here was used in computing the

standard deviation for most major sets of data in Volume II.
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Figure i. Distribution of stature measurements (AFW'68 data).
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The range in statures in graph (a) would appear to be from about
7 inches below the mean (56.8 inches) to about 7 inches above it (70.8
inches). Graph (b) is a little narrower than graph (a). Here the range
would seemto be about 6 inches up and downfrom the meanvalue (57.8 inches
to 69.8 inches). Graph (c) is in turn still narrower--only slightly more
than half as wide as the first graph. Here the range seemsroughly about
X + 4.2 inches or from 59.6 inches to 68.0 inches. Finally, the last graph,
little more than 20% as wide as the first one, showsa range of statures
from about 62.3 inches to 65.3 inches.

The ranges suggested by these graphs are, in each case, from approxi-
mately three standard deviations below the mean (X - 3 SD) to three standard
deviations above it (_ + 3 SD). Other important points on the distribution
of a set of anthropometric data can be located, at least approximately,
by adding or subtracting a multiple of the standard deviation to the mean
value. In particular, it is worth noting (see also Figure 2) that:

about 2/5 of a set of data fall between_-0.5 SDandX+0.5 SD
about 2/3 of a set of data fall betweenX-I.0 SDandX+l.0 SD
about 87%of a set of data fall between_-l.5 SDandX+l.5 SD
about 95%of a set of data fall betweenX-2.0 SDandX+2.0 SD
almost all of a set of data fall betweenX-3.0 SDandX+3.0 SD.

-3SD -2SD -ISD MEAN +]SD +2SD +3SD
50%

16% _Ii, 34%
47.5%

49.9%

2.5% I
D J

50%

16%

_1_ 2.5%

-I-
49.9%

..] %

Figure 2. Areas under the normal curve.
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These figures can be restated in several ways. One could say, for
example, that about one-third of the data will fall in the range from the
mean to the mean plus a standard deviation and that about one-sixth of
the data will exceed the meanplus a standard deviation.

In Table 2, we have listed for more or less normally distributed
data the approximate _percentages which will fall into ranges which are
based on the mean (X) and various multiples of the standard deviations
(K.SD).* Here we may note_ for example, that if K = 0.5, then:

m

about 31% of a set of such data fall below X - K'SD

about 31% fall above X + K" SD

about 3_/o fall between_ - K'SD and_ + K-SD

about 6_/o fall below X + K'SD

(Column A)

(Column A)

(Column B)

(Column C)

To illustrate one typical use of a table s_ch as Table 2, we can

estimate the proportion of USAF flying personnel who are taller than 6'1".

Our best data for these men are those from the USAF '67 flying personnel

survey. From Table i (or Volume II) we find that the appropriate statistics

are these:

Mean stature: 69.82"; standard deviation: 2.44".

Using these figures, we next determine how far 6'1" is above the mean in
standard deviation units:

K
6' I"-X 73.00-69.82 3.18

= - = -- = 1.30
SD 2.44 2.44

Column A in Table 2 gives

conclude that about i_% of

taller.

a value of 9.7% for K=I.30, from which we may

the Air Force's male fliers are 6'I" tall or

We can similarly estimate the proportion of Air Force women shorter

than 5' i". From Table i, we obtain the relevant statistics from the

survey of such women made in 1968:

mean stature: 63.82"; standard deviation: 2.36".

On the basis of these statistics, 5' I" is 2.82" or 1.19 standard devia-

tions below the mean. Entering Table 2 with the value K = 1.2, we get

11.5% as the approximate number of these women shorter than 5 feet. Since

there are virtually no Air Force women taller than 6'1" and virtually no

flying personnel shorter than 5 feet, we are in a position to conclude that a

design range for statures from 61" to 73" would include roughly 90% of

both the USAF flying personnel and USAF women.

*More detailed versions of Table 2 (and Table 5) are available in Abramowitz

and Stegun (1964).
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TABLE 2

APPROXIMATE PROPORTIONS OF DATA FALLING INTO INTERVALS BASED ON MEAN +K STANDARD DEVIATIONS

_-_SD _+KSD _-KSD _+KSD _+KSD

K A B C

O. 0 50. O_ O. 0_, SO. 0%

O. 1 46.0_ 8.0% 54.0_

0.2 42.1_ 15.8_ S7.9_

0.3 38.2_i 23.6_ 61.8%

0.4 34.5_ 31.1_ 65.5_

0.5 30.9_ 38.3% 69.1_

0.6 27.4% 45.1% 72.6%

0.7 24.2% SI.6_ 75.8%

0.8 21.2% 57.6% 78.8%

0.9 18.4% 63.2% 81.6_,

1.0 15.9°o 68.3% 84.1_

1.1 13.6% 72.9% 86.4_

1.2 11. S% 77.0% 88.Sg

1.3 9.7% 80.6% 90.3%

1.4 8. 1% 83.800 91.9%

1.5 6.7% 86.6% 93.3%

1.6 5. S°o 89.0% 94. S_,

1.7 4. S% 91.1% 95. S_,

1.8 3.65 92.8% 96.4_

1.9 2.9% 94.3% 97.1_

2.0 2.3% 95.4% 97.7_

2.1 1.8% 96,4% 98.2_

2.2 1.4% 97.2'_ 98.61i

2.3 1.1¢. 97.8_ 98.91_

2.4 0.8_ 98.4_ 99.21_

2. S O. 6_ 98.8_ 99.41

2.6 O.S_ 99.1_ 99. 511

2.7 O. 3_ 99.3_, 99.7_,

2. fl O. 3_ 99. $_ 99.7_

2.9 O. 2_ 99.6_ 99.8_

3.0 O. 1_ 99.7_ 99.9'_
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An important restatement of the standard deviation is known as the

coefficient of variation. This statistic, often designated by the letter

V, is the standard deviation expressed as a percentage of the mean value:

V = SD . 100% or (SD/_) • 100%

Thus, the coefficient of variation of the statures measured in the

USAF '67 flying personnel survey, based on the statistics just used, is

V = 2.44" • 100% = 3.497°

69.82"

The coefficients of variation are presented for all sets of data in Volume

II*. They are designated there, as can be seen from Table I, by "COEF

OF V."

The importance of the coefficient of variation for body size data

is that this statistic tends to have roughly the same value for anatomi-

cally similar measurements. A few values, based on the 1968 Air Force Women's

survey and the USAF '67 and USAF '50 flying personnel surveys, are shown

in Table 3. Weight usually has a coefficient of variation of 10%-15% for

military samples, skinfold measures have values in the 30% to 50% range,

but most measurements have considerably smaller values. The major head

measurements have among the lowest values of V, usually in the 2.5% to

3.5% range. Heights and long bone measurements bave coefficients of varia-

tion in the 3.5% to 5.0% range. Major circumferences, breadths, and depths

have values usually falling between 5% and I_/o. Within these broad categor-

ies, the smaller the measurement, the larger the coefficient of variation

is likely to be, in part because the smaller the measurement, the relatively

greater the measurement error. The more closely a measurement is related

to the bony structure of the body, the smaller the value of V. Thus, for

example, the values of V in Table 3 for shoulder circumference (5.0-5.2%)

are only about 60% as great as those for waist circumference (8.2-9.3%).

Small measurements not based on bony landmarks are particularly prone to

large coefficients of variation.

There are a few standard anthropometric measures which do not corre-

spond to a single anatomic entity as much as they represent the difference

between two such entities. For such measurements, the coefficient of varia-

tion is likely to be quite high. A major example of such a measurement

is elbow-rest height--the distance from the underside of the elbow to the

*The coefficient of variation is clearly independent of the units in which

a measurement is expressed. However, there are occasional minor differences

in Volume II between the values of V given with the metric data and those

given with the Englis_ values. This is because V was computed in each

case from the values of X and SD exactly as they are listed.
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TABLE 3

COEFFICIENTS OF VARIATION BY MEASUREMENT TYPE

Head circumference

Head length
Head breadth

Stature

Acromial height
Cervicale height
Chest height
Waist height
Crotch height
Sitting height
Knee height sitting
Sleeve length

a) Major Head Measurements (2.5_-4.0_)

1967 Flying Air Force 1950 Flying
Personnel Women Personnel

2.SI 3.0t 2.71
3.4t 3.7t 3.3t
3.5t 4.1t 3.4t

b) Major Heights and Long Bone Lengths (3.5t-5.St)

3.5t 3.8_ 3.6_
4.0_ 4.2_ 4.0_
3.9_ 4.0_ 3.9_
4.1_ 4.5_ 4.1_
4.5_ 4.5_ 4.3_
4.9_ 5.5_ 5.2_
3.5_ 3.8_ 3.6_
4.5_ - 4.6_
3.9_ 4.2_ 4.5_

c) "Bonf' Circumferences (5.0_-6.5_)

Shoulder circumference
Ball of foot circumference
Knee circumference
Wrist circu_erence
Buttock circumference
Chest circumference

S.O_ 5.2_ 5.2_
5.0_ - 5.0_
5.4_ 6.3_ 5.8_
5.2_ 4.8_ 5.3_
5.6_ 6.0_/6.4_ 6.0_
6.S_ 6.4_ 6.2_

d) "Fleshy" Circtmferences, Breadths, Depths (6.5_-I0.0_)

Waist circumference

Biceps circmaference (relaxed)
Thigh circumference
Calf circumference

Buttock depth
Chest breadth

Chest depth

e) Weight (10t-15t)

Weight

£) Skinfolds

Triceps
Subscapular
Juxtanil_le

8.5_ 8.2t 9.3t
7.6_ 9.0_ 7.9_
7.6t 7.7_ 7.6t
6.2_ 6.6_ 6.5t
8.6_ 8.5_ 9.2_
6.5_ 6.9_ 6.6_

7.9_ 8.2_ 8.2_

12.4_

(30_-SOt)

40.2_
38.7t
49.3q

13. It

28.5q
37.3q

12.8q
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sitting surface. This measurement is basically the difference between sitting

shoulder height and shoulder-elbow length and, not surprisingly, usually
has a coefficient of variation in excess of i_/o even though it is classified
as a "length."

In addition there are a few measurements for which the coefficient

of variation is not an appropriate statistic. Primarily, these are measure-

ments for which the zero value is arbitrary. An example, illustrated in

Figure 3, relates to the inclination of a line joining the center of the

earhole and the outer corner of the eye. We could measure the angle this

line makes with a horizontal axis (_ or its angle with a vertical axis

(_). Both (_ and (_) will contain the same information, be equally valid

and useful, and have the same standard deviation. However, since the mean

value of the first will be about I0° and of the second about 80 ° , the coeffi-

cient of the first will be about eight times as large as the first.

I

Figure 3. Measurement with an arbitrary
zero value.

Other measures of 'variability are occasionally used: the range, the

mean deviation, the probable deviation, the semi-interquartile range, and

so forth. The range is simply the difference between the largest and smallest

values in a set of data. The mean deviation is the average of the absolute

values of the deviations from the mean (sometimes from the median). The

probable deviation is about two-thirds as large as the standard deviation;

it was defined so that 50% of a set of data would fall within a probable

deviation of the mean. The semi-interquartile range is half the distance

from the 25th percentile (soon to be defined) and the 75th percentile.
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Of these, only the range is likely to be encountered in compilations

of anthropometric data. The range is obviously an easily computed and easily

understood statistic. Unfortunately, except as a purely descriptive statis-

tic, it is a notoriously poor one because it is dependent on sample size,

because its sampling error decreases at no more khan a snail's pace as

the sample size increases, because it is completely dependent on the two

most atypical and most probably erroneous individual values in a set of

data, and because, when computed from edited data, it is highly dependent

on the subjective judgment of the editor. Range values have not been included

in Volume II.

The Percentiles

The class of statistics which are most closely related to design

problems are the percentiles and other so-called measures of position.

The definition of the percentiles is fairly simple. For any set of

data--the weights of a group of pilots, for example--the first percentile

is a value which is, on the one hand, greater than the weights of each

of the lightest i% of the pilots and is, on the other hand, less than the

weights of each of the heaviest 9_/o of these men. Similarly, the second %ile

is greater than each of the lightest 2% and less than each of the heaviest

9_%. Whatever the value of K--from 1 to 99--the K-th percentile is a value

greater than each of the smallest K% of the weights and less than the largest

(100-K)%. The 50th percentile, which we encountered among the averages

as the median, is a value dividing a set of data into two groups containing

the smallest and largest 50% of the values.

The role of percentiles in many types of design problems is to provide

a basis for judging the proportion of a group of individuals who exceed

--or fall below--some possible design limit. There are, naturally, 99 percen-

tiles, from the ist to the 99th, although even the most complete computations

of body size data are usually limited to the Ist, 2nd, 3rd, 5th, 10th,

• .., 90th, 95th, 97th, 98th, and 99th. Space constraints have limited those

listed in Volume II to the 9 most important of these as they appear in

Table I. Those omitted--mostly percentiles between the 25th and the 75th-

-are rarely, if ever, used in design problems and can, as we shall see,

be easily approximated if they are needed. A few of the percentiles in

addition to the median have other names. In particular, the 25th and 75th

percentiles are the ist and 3rd quartiles (the median is the 2nd quartile);

and the 10th, 20th, etc. percentiles are also known as the Ist, 2nd, etc.

deciles.

The computation of the percentiles is not quite as simple as our

definition would suggest. The basic problem is that, in general, there

are no values which satisfy the definition. A strict reading of the defini-

tion says that the ist percentile is a weight such that 1% of the 2,420

flyers (or 24.2) are lighter and 9_/o (or 2,395.8) are heavier. One problem

is that we are limited to integer numbers of men; we can count off 24 or

25 men, but not 24.2. A second problem is that we can't really arrange
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all 2,420 men in order of their weights; all these menundoutedly have
different weights, but they don't all have different recorded weights.

In practice, we rely on computational methods based on the spirit, rather

than the precise letter, of the definition.

One useful method of computing percentiles is based on the special

graph paper shown in Figure 4. This graph paper has been designed so that

we get points which fall on a straight line if we plot the cumulative fre-

quencies of a perfect normal distribution. Plots of real data for body

size dimensions on this type of graph paper usually consist of points which

can be fitted by a smooth curve which, at least in the mid-range, is almost

linear.

To illustrate the process, we have provided in Table 4 the frequency

table for U.S. Navy pilots' statures. In Figure 4, the cumulative frequencies

are plotted against the upper limits of the intervals in this table. We

have drawn on this figure a smooth curve passing close to, but not always

through, the plotted points. The percentiles are ultimately read from this

curve. Thus, for example, we note that the 5th percentile here is 168.3

cm, the 10th percentile is 170.0 cm, etc. The computational procedure not

only circumvents the problems we have discussed, but also tends to minimize

the irregularities from which data from finite samples always suffer.

In Figure 5 we have plotted the same points on conventional graph paper to

illustrate the differences in the graphs which the two types of paper pro-

vide.

Percentiles for the major series of data included in this handbook

were computed using a method similar to this graphic one but one designed

for use on a computer in order to reduce the labor involved and to provide

more objective results. Full details of this method, including the computer

program, are given in Anthropometry of Air Force Women by Clauser and his

associates. Every set of percentiles appearing in Volume II which includes

the Ist and 99th percentiles were computed using this computer program.

Percentiles for a few small series of data included in Volume II were also

computed by this method, but the extreme percentiles are not listed because

of sample size. Details of the calculation of most of the other percentiles

listed in Volume II, unfortunately, have never been published.

Our earlier discussion of the mean and the standard deviation came

close to establishing--for more or less normally distributed data--a rela-

tionship between the standard deviation and the percentiles. Table 5 makes

this relationship more explicit by indicating for each percentile its dis-

tance in standard deviations above or below the mean. The table indicates,

for example, that the 5th and 95th percentiles are, approximately, 1.645

standard deviations below and above the mean; these percentiles for USAF

'67 flying personnel statures can thus be approximated as 69.82-1.645.2.44=

65.8" and 69.82+1.645"2.44=73.8", values not very different from those shown

in Table i (65.9" and 73.8").

Table 5 points up an important fact about percentiles: the difference

between consecutive percentiles increases substantially as one goes from
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TABLE 4

FREOUENCY TABLE FOR U.S. NAVY PILOTS' STATURES

Value F Cure F Cure F

194.25-196.25

192.25-194.25

190.25-192.25

188.25-190.25

186.25-188.25

184.25-186.25

182.25-184.25

180.25-182.25

178.25-180.25

176.25-178.25

174.25-176.25

172.25-174.25

170.25-172.25

168.25-170.25

166.2S-168.25

164.25-166.25

162.25-164.25

160.25-162.25

2

8

11

40

62

93

129

157

192

191

180

173

133

74

58

18

6

2

1529

1527

1519

1508

1468

1406

1313

1184

1027

835

644

464

291

158

84

26

8

2

100. O0

99.87

99.35

98.63

96. O1

91.96

85.87

77.44

67.17

54.61

42.12

30.35

19.03

10.33

5.49

1.70

0.52

0.13
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TABLE 5
PERCENTILE-STANDARD DEVIATION RELATIONSHIPS

Percentile

ist

2nd

3rd

4th

5th

6th

7th

8th

9th

10th

llth

12th

13th

14th

15th

16th

17th

18th

19th

20th

21st

22nd

23rd

24th

25th

Percentile Percentile

M*± 2.326 SD** 99th

M ± 2.054 SD 98th

M t 1.881 SD 97th

M ± 1.751 SD 96th

M ± 1.645 SD 95th

M ± 1.555 SD 94th

M ± 1.476 SD 93rd

M ± 1.405 SD 92nd

M ± 1.341 SD 91st

M ± 1.282 SD 90th

M ± 1.227 SD 89th

M t 1.175 SD 88th

M t 1.126 SD 87th

M ± 1.080 SD 86th

M t 1.036 SD 85th

M ± 0.994 SD 84th

M ± 0.954 SD 83rd

M ± 0.915 SD 82nd

M ± 0.878 SD 81st

M ± 0.842 SD 80th

M t 0.806 SD 79th

M ± 0.772 SD 78th

M ± 0.739 SD 77th

M ± 0.706 SD 76th

M ± 0.674 SD 75th

Percentile

26th M ± 0.643 SD 74th

27th M ± 0.613 SD 73rd

28th M t 0.583 SD 72nd

29th M ± 0.553 SD 71st

30th M ± 0.524 SD 70th

31st M t 0.496 SD 69th

32nd M t 0.468 SD 68th

33rd M ± 0.440 SD 67th

34th M ± 0.412 SD 66th

35th M ± 0.385 SD 65th

36th M ± 0.358 SD 64th

37th M ± 0.332 SD 63rd

38th M ± 0.305 SD 62nd

39th M ± 0.279 SD 61st

40th M ± 0.253 SD 60th

41st M ± 0.228 SD 59th

42nd M ± 0.202 SD 58th

43rd M ± 0.176 SD 57th

44th M ± 0.151 SD 56th

45th M ± 0.126 SD 55th

46th M ± 0.100 SD 54th

47th M ± 0.075 SD 53rd

48th M ± 0.050 SD 52nd

49th M ± 0.025 SD 51st

50th = M

* Mean

** Standard Deviation
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the

Table

tiles

unit,

order

rises

tile

center out to either end of the range. To emphasize this point, in

6 we have taken the difference between the 50th and the 51st percen-

as a "mid-range design unit" and have tabulated, in terms of this

the increases in the width of a design which would be required in

that it cover an additional one percent of the population. This cost

slowly over the middle of the range; to go from 75th to 76th percen-

requires an increase only about 1.3 times as large as was required

to go from the 50th to the 51st. Not until we are almost at the 90th percen-

tile does an increase of one percentile value cost twice the mid-range

unit but from there on the cost increases rapidly. To include the one

percent of the population between the 98th and 99th percentiles will require

an increase of almost Ii mid-range design units. We can be confident that

the top one percent of the values will be spread over an exceedingly wide

range, but it is unrealistic to expect accurate estimates of just how wide.

Measures of Syr_netry and Kurtosis

Measures of synmnetry (BI) and kurtosis (B2) are sometimes given in

reports of anthropometric surveys. Since t_ese statistics are usually close

to the normal distribution values of 0.0 and 3.0 for body measurements

of interest to the design engineer, we have not included them in this hand-

book. The value of BI (sometimes spelled out as veta, corresponding to the

Greek pronunciation, other times as beta) is based on the cubes of the

differences between the data and their mean. Positive values of B are sugges-

tive of a pattern in which data are distributed at greater distances above

the mean than they are below it. The value of B2 is based on the fourth

power of these differences and normally relates to the degree of peakedness
of the distribution of the data.

The Interrelationship Among Anthropometric Measures

Tall men tend to have long arms, short men tend to be below average

in hip breadth. Men with long faces, on the other hand, are almost as likely

to have narrow faces as they are to have wide ones. All anthropometric

measures are to one degree or another statistically related to each other;

the nature and degree of these relationships are often matters of substantial

importance in the design of equipment, workspace, and clothing.

In Figure 6 we have illustrated examples of four rather different

degrees of relationship:

a. the almost perfect relationship between stature and stature maxi-

mum;

b. the less close but still quite substantial relationship between

weight and shoulder circumference;

c. the modest relationship between stature and weight;

d. the almost negligible relationship between lip length and face

length (menton-sellion length).
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TABLE6
COSTOFACCOMMODATINGADDITIONALPERCENTAGESOFA USER-POPULATION

IN MID-RANGEUNITS

Population PercentaKe

50th to 51st

60th to 61st

70th to 71st

75th to 76th

80th to 81st

85th to 86th

90th to 91st

91st to 92nd

92nd to 93rd

93rd to 94th

94th to 95th

95th to 96th

96th to 97th

97th to 98th

98th to 99th

(99th to 99.5th)

(99.5th to 99.9th)

Cost in Mid-Range Units*

1.00 unit

1.04 units

1.16 units

1.27 units

1.45 units

1.75 units

2.36 units

2.56 units

2.82 units

3.15 units

3.59 units

4.22 units

5.18 units

6.88 units

10.86 units

19.88 units/percent

51.24 units/percent

*i.e., the width of the interval required for a particular percent

expressed as multiples of the width of a similar interval near

the center of the distribution.
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STATURE AND STATURE, HAXIHUM

STATURE, MAX[HUM

145 147 149 151 153 155 157 159 161 163 165 167 169 171 173 175 177 179 181 183 TOT
.25 .25 .25 .25 .25 25 .'25 .25 .25 .25 .25 .25 .25 .25 .25 .25 .25 .25 .25 .25 ALS• 1 1

183.25 1 1
181.25 8 1 9
179.25 9 5 14

177.25 10 3 13
175.25 1 41 11 53
173.25 61 21 82
171.25 1 83 41 125
169.25 113 74 187
167.25 1 125 57 183

_U 165.25 241

_ 161.26 164 77161.25 2 183 75 260211
159.25 146 65 190
157.25 132 58 160
155.25 101 59 88
153.25 58 29 1 60
151.25 42 18 17
149.25 13 4 8
147.25 5 3 2
145.25 2

Totals 2 S 16 46 76 130 192 2(36 24? '40 202 171 157 103 62 21 12 13 2

Sum_ry Statistics

Hean Std Dev Regression Equattons SE-Est

Y-Stature 162.10 6.00 0.995X + 0.169 0.38
X-Stature, Haxlmum 162.75 6.02 1.001Y + 0.482 0.38

A. An exceedingly close relationship: correlation coeff|ctent = 0.998

1 1905

WEIGHT AND SHOULDER CIRCUMFERENCE

SHOULDER CIRCUMFERENCE

87 89 91 93 95 97 99 101 103 105 107 109 111 113 115 117 119 121 TOT
.25 .25 .25 .25 .25 .25 .25 .25 .25 .25 .25 .25 .25 .25 .25 .25 .25 .25 ALS

200.00 1 1 2
196.00 1 1 2
190.00 1 1 2
185.00 1 1 3 2 7
180.00 1 1 1 3
175.00 1 1 1 1 2 1 7
170.00 1 2 S 1 2 2 1 14
165.00 2 2 4 6 1 2 17
160.00 1 1 3 2 15 1 2 1 3 1 30
155.00 1 1 S 10 10 13 6 3 49
1SO.OO 1 3 19 13 17 12 S 2 72

_ 145.00 2 4 19 28 23 29 12 4 1 122
140.00 3 5 14 24 28 34 22 8 3 1 142

_J 13S.00 2 6 5 22 56 44 28 16 1 1 181
130.00 1 9 28 52 58 48 27 7 1 231
125.00 1 1 24 44 72 56 28 12 3 241
120.00 14 29 53 74 32 16 3 221
115.00 5 21 48 60 54 15 5 1 209
110.00 2 7 25 49 47 14 8 152
IOS.O0 4 II 37 29 25 6 1 113

100.00 6 IS 21 17 2 61

96.00 1 2 10 6 3 22
90.00 2 2 4
85.00 1 1

Tot41s 2 14 51 130 218 271 313 274 226 156 i13 75 24 15 11 7 4 1 1905

Sulmmr_ 5tlttstlc$

Ne4n S_Oev RNrtlltOn Eau4tto_s $E-Est

Y-Wetght 127.28 16.5g 2.6_X - 143.330 9,13
X-Shoulder Circ 100.41 S.14 O.|_r , 67.447 |,83

B. A close relettonsh]p: correlation coefficient • 0.83S

Figure 6. Bivariate frequency tables illustrating

interrelationships of anthropometric data

(from Clauser et al. 1972).
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200.00
195.00
190.00
185.00
180. O0
175,00
170. O0
165.00
160.00
155.00
150.00
145.00
140.00

_' 135.00
130. O0
125.00
120.00
115.00

110.00
105.00
100.00 2

95.00
90. O0
85. O0

STATURE

145 147 149 151 153 155 157 159 161 163 165 167 169 171 173 175 177 179 181 183 TOT
• 25 .25 .25 .25 .25 .25 .25 .25 .25 .25 .25 .26 .25 .25 .25 .25 .25 .25 .25 .25 N.S

1 1 2
I 1 2

1 1 2
2 2 3 7

2 1 3
1 3 1 1 1 7

1 1 1 1 1 2 1 2 1 1 2 14
2 1 1 1 5 1 3 3 17

1 3 1 4 1 6 4 5 3 1 1 30
4 1 4 6 g 6 4 8 3 1 1 2 49

1 2 3 2 10 g 18 14 7 5 1 72
I 4 2 10 24 21 15 18 8 10 3 4 2 122
1 1 7 11 9 15 19 17 23 22 8 3 4 1 1 142

1 3 g 13 15 22 30 23 26 14 8 13 3 1 181
1 5 5 14 14 28 35 39 35 26 12 13 3 1 231

2 5 10 16 28 35 42 32 23 23 11 6 4 1 2 1 241
6 11 18 27 38 44 22 23 13 12 4 1 1 1 221

3 4 7 15 24 32 33 40 19 11 11 6 3 1 209
2 2 8 18 23 26 20 21 17 4 5 2 2 2 152

1 3 12 11 24 18 13 14 g 4 3 1 113
1 11 10 14 7 7 5 3 1 61

1 2 4 1 8 3 1 2 22
1 1 2 4

1 1

Totals 2 8 17 60 88 160 190 211 260 241 183 187 125 82 53 13 14 9 1 1 1905

Summary Statistics

Nean Std Dev Regressto _ Equations SE-Est

Y-Weight 127.28 16.59 1.471X 111.172 14.04

X-Stature 162.10 6.00 0.193Y + 137.536 5.08

C. A modest relationship: correlation coefficient = 0.533

LIP LENGTH AND NENTON-SUBNASALE LENGTH

HENTON-SUBNASALE LENGTH

3 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6 7 7 7 TOT
.95 .15 .35 .55 .75 .95 .15 .35 .55 .75 .95 .15 .35 .55 .75 .95 .15 .35 .55 ALS

5.75 2 1 1 4
5.55 1 2 2 3 2 1 1 2 14

5.35 1 1 4 2 4 2 3 5 1 1 1 25
5.15 2 1 1 15 12 9 11 10 8 3 1 1 1 75
4.95 1 1 1 3 10 8 13 17 16 21 19 13 9 1 3 1 137

4.75 1 2 7 9 17 23 35 27 32 29 22 9 7 2 222
4.$5 ! 2 4 7 16 26 38 53 53 45 44 26 18 6 5 1 345
4.35 2 3 3 8 11 22 41 41 57 30 37 21 7 2 5 4 294

4.15 1 6 8 16 37 47 69 66 48 44 25 6 9 6 2 390
3.95 5 6 10 19 28 30 46 18 26 10 6 4 3 2 213
3.75 1 1 2 2 12 16 lg 26 12 19 5 3 2 1 121
3.55 1 2 3 6 6 9 6 11 2 1 1 48

3.35 1 1 4 2 2 1 1 12
3.15 1 1 1 1 1 5

Totals 5 8 22 45 78 147 234 287 321 231 247 139 66 34 25 13 1 1 1 1905

Summary Statistics

Hean Std Dev Regression Equations SE-Est

Y-Lip Length 4.38 0.42 0.058X + 4.057 0.42
X-Henton-Subnasale L 5.54 0.51 0.085Y + 5.169 0.51

D. A negligible, almost non-existent relationship:
correlation coefficient = 0.070

Figure 6. (continued)
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In the first of these tables we may note that everybody with a specific

value for stature has a cormmon, or almost common, value for stature, maximum.

In the fourth table, on the other hand, an individual's value for lip length

provides virtually no indication of the size of her face length. In the

other two tables, the patterns are intermediate between these two.

Two basic statistical concerns in this area of interrelationships

are suggested by these tables. One is that of quantifying the differences

in degrees of relationships so obvious here; this is the role played by

the statistic known as the correlation coefficient. The second concern

is that of establishing the pattern that values of one variable follow

in relationship to a second; this is the role of the regression equation

and the standard error of estimate. These two statistical concerns and

the statistics involved are themselves well interrelated.

The correlation coefficient is the standard measure of the degree

or intensity of the relationship between two variables. It ranges in value

from 1.00, which indicates a perfect relationship, to 0.00, which indicates,

on the other hand, no relationship. The first and fourth of our tables,

with correlation coefficients of 0.998 and 0.128 come close to represent-

ing these extremes. The correlation coefficient can also fall in the range

from 0.00 to -I.00 (this is somewhat rare for body size measurements)

indicating that one variable tends to decrease in size as the other

increases.

There are a substantial number of correlational measures. Of these,

the most common for use with continuous data--such as our measurement data

--is the Pearsonian product-moment correlation coefficient. Almost without

exception this is referred to simply as the correlation coefficient. There

are a variety of other types of correlation coefficients for use with cate-

gorized data (blood type, region of birth, etc.) but as these play little

role in the solution of design problems we shall not discuss them.

Pearson's correlation coefficient derives from the related concept

of the regression line or the regression formula. Given any two variables,

we can set up an equation for estimating values for one variable in terms

of the other. A typical example is the equation for estimating a man's

sitting height from his stature shown in Figure 7. If the variables have

a close relationship, the estimates given by the equation will be quite

accurate. When, on the other hand, the degree of relationship is low or

negligible, the estimates will have little accuracy.

No complete listings of the correlation coefficients for any of the

sets of anthropometric data on which Volume II is based are included in

this handbook. A few coefficients for USAF fliers and for Air Force Women

are included, primarily for illustrative purposes, in Table 7. Correlation

matrices for the USAF flying personnel surveys of 1967 and 1950, for Air

Force Women (1968) and several other surveys are included in Churchill,

Kikta, and Churchill (1977).
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a}

b)

k. Calculations from Raw Data

X Y X-X" V-Y" (X-X) CY-Y') (X-£) 2 (y._') 2

7 b o l o o 1
9 7 2 2 4 4 4
$ l o2 -4 8 4 16
4 3 -3 -2 b 9 4

io 8_ __ 5_ 9 £ _g
z 3s zs 0 o 2_ 26 _4

The correlation coefficient:

The regression line: SDx =

i.

_lx._lfy__) 27
r -/z(x.x]=z(y_30=- V2C.Ti=O.9l

= _ = 2.28; SDy = _ = 2.61

to estimate y: a = r SDy/SD x = 0.91,2.61/2.28 - 1.04

B = Y - a X = 5 - 1.04,7 = -2.28

SEy = SDx 1-,/_ "y = 2.61vT_ = 2.61-.41 = 1.07

Y* = 1.04 X - 2.28

ii. to estimate x: a = r SDx/SDy = 0.91.2.28/2.61 = 0.79

8 = X - a Y = 7 - 0.79.S = 3.05

SEx = SDx 1-v_TrT = 2.28 l,/_-(.91) 2 = 2.28..41 = 0.93

X* = 0.79Y + 3.05

a)

B. Calculations Based on Computed Statistics

Simple regression equations:

i. to estimate sitting height from stature (USAF'67 data)

from Table VI: r - 0.786

from Volume lI: sitting height - mean = 36.69", SD = 1.25"

stature - mean = 69.82", $0 = 2.44"

o = r SDy/SD x = 0.786.1.25/2.44 - 0.403

B • Y - o _ = 36.69 - 0.403.69.82 = 8.55"

SEy • SDy,/-_ T = 1.25 _ = 1,25.0,618 • 0.77"

Y* = 0,403"X + 8.55

For men 6 feet tall, we can estimate sitting height as

Y* • 0.403-72 + 8.55 • 37.57"

two-thirds in x _1SD range: 37,57 - 0.77 • 36,8" to 37.57 + 0.77 = 38.3"

9St in a ±2 S0 range: 37.57 - 1.S4 - 36.0" to 37.$7 * 1.54 = 39.1"

ii. to astilate stature from sitting height (the ssae data)

a • r SDx/SD x • 0.786"2.44/1,2S • I.S3

B • Y - a X - 69.82" - 1.S3.$6.69 • 13.69

szr • soy,q':_r. 2.44 I,/W_-(,T'_. 2,44.0._ms• l.Si

X* = 1.53 Y + 13.69

Figure 7. Correlation coefficients and regression equations:
a few illustrative calculations.
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Fur men with sitting heights of 34",

/'* = 1.53.34 + 13.b9 = b5.71"

two-thirds in a -*ISD range: O5.71 - l. Sl = b4.2" to bS.71 + l.Sl : b7.2"

95% in a ±2SD range: 05.71 - 3.02 = 02.7" to b5.Tl * 3.02 = 68.7"

b) Multiple correlation and regression:

i. correlation of X3 with the combination of X 1 and X2:

rl,3 2 + rl,22 - 2rl,2-rl,3,r2,3R= 1 - r z
1,2

to estimate chest circumference (](3) in terms of stature (X 1) and

weight (X2): (USAF'67 data)

rl, 3 = correlation of stature with chest circumference = 0.2S7

r2, 3 = correlation of weight with chest circumference = 0.799

rl, 2 = correlation of stature with weight = 0.555

/(.257) z * (.799) a - 2(.533)(.257)(.799) =./-_-_ 0.824

R =V I - (.533) _ V 0.716 =

ii. to estimate X3 from XI and X2

SD 3 = _lS---g-ff_-l÷ 82 SD2

rl, 3 - rl,2"r2,3 .257 - .533-.799

where 81 = I - r 2 = I - (.533) 2
1,2

r2.3 - rl,2"rl,3 .799 - .533,.257
82 =

1 - rl,22 i - (.533) 2

= -0. 256

= 0.925

The standard error of estimate = SD 3 _ = 0.567 SD 3

, SD 3 SD 3 SD 3 SD 3

X3 = Bl -_i xl + 132 _ x2 + X3 - 81 _% - 82 _X2

Since, Xl = 69.82", SD 1 = 2.44"

X2 = 173.6 lb, SD 2 = 21.4 lb

X3 = 38.80", SD 3 = 2.5_'

2.50 2.50
X; = -.236 _--_- (X 1 - 69.82) + .925 _ _2- 173.6) + 38.80

= -.242 X 1 + .108 X2 + 36.95

Thus, our estimate of chest circumference of a man 6' tall who weighs

200 pounds is

X 3 = -.242,72 + .108"200 + 36.95 • 41.13"

Since SEy = 2.50" lV_-(.824)z = 1.42", we can expect that about two-thirds

* ± SEy:of such men will have chest circumferences in the range X3

*

41.13 ± 1.42 = 39.7" to 42.6", and 95Z in the range X 3 ± 2SEy =

41.13 ± 2.84 = 38.3" to 44.0"

Figure 7. (continued)
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Logically, there are two correlation coefficients for each pair of
variables: the one defined in terms of howwell we can estimate Y from
X and that defined in terms of how well we can estimate X from Y. Fortun-
ately these two are numerically equal and need not be distinguished. This
is not true when regression equations corresponding to curved lines are
used or when more than one variable is used in the estimating process.
There are, of course, different regression lines for each variable.

The basic definition for the correlation coefficient for X and Y
can be written as follows:

Z(x-i) (Y-V)
r = 4_(X__2. E(y__2

and is illustrated in Figure 7. We can argue that this formula is at least

a reasonable one as a measure of relationship. The terms in the denominator

are always positive, but the terms in the numerator can be either positive

or negative. They will be positive when X and Y are both above average

and when both are below average; they will be negative whenever X is above

average and Y below average or vice versa. Since terms of one sign cancel

those of the other sign, the size of the numerator (and therefSre of the

correlation coefficient) will reflect the extent to which terms of one

sign predominate. We have used the letter r here to designate the correlation

coefficient; this is standard practice. When it is necessary to specily

the relevant variables, we may write rl, 2 or r or some similar expression.x,y

There is a bit more to this formula than noting how often individuals

are, on the one hand, either below or above the mean on both of a pair

of measurements and how often, on the other hand, they are above the mean

on one and below the mean on the other. Still, this concept of the correla-

tion coefficient is accurate enough to provide a useful basis for judging

the size of a correlation coefficient. By replacing the mean with the median

in this concept (which will make little difference for most body size mea-

surements) we can reduce our data for a pair of variables to a simple 2x2

table:

Measurement X

Above

Median

Below

Median

Below Above

Median Median

B A

A B

and take as an approximation:

r(approx)
A - B

A+B
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Thus, if in a group of 200 pilots, 75 of the i00 men who are above the median

value for weight are also above the median in stature and vice versa, we
would have the table:

- +

25

75

+

Restated, this

above the median on one measurement, the

the median on a second measurement is about:

75 A-B = 75-25 = 50

25 A+B = 75+25 = I00

r (approx) = 50/100 = 0.5

formula suggests that out of every I00 individuals who are

number who will also be above

50 whenever r = 0.0

55 whenever r = 0.i

60 whenever r = 0.2

65 whenever r = 0.3

70 whenever r = 0.4

75 whenever r = 0.5

80 whenever r = 0.6

85 whenever r = 0.7

90 whenever r = 0.8

95 whenever r = 0.9

This relationship is an approximate one but is reasonably good for the

purpose of evaluating the degree of relationship that a correlation coeffi-

cient, based on body size data, represents.

Another quite important interpretation of the correlation coefficierkt

is in terms of the accuracy of the regression equation estimates. It is

customary to measure this accuracy by a statistic--the standard error of

estimate--which is similar to the standard deviation but is based on the

differences between the actual data values and the estimated values, rather

than on the differences between the data and the arithmetic mean. The stan-

dard error of estimate is defined as

SEy = _z(Y-Y*)2/N

where Y* represents the regression estimates and Y the actual values. By

algebraically manipulating this formula and the one for the correlation

coefficient we arrive at the important relationship between these two sta-
tistics:

SE = SDI_-r 2
Y
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Note that, as we should expect, SE is zero for perfect correlations (r
= +i or -I) and equals the standard deviation where r = 0. Wemay further
observe that, since the correlation coefficient appears here as a squared
value, a negative value of r has the sameeffect as a positive one of equal
magnitude.

Just as, in general, two-thirds of a set of data lie within a standard
deviation of the mean, so too about two-thirds of a set of estimates will
lie within one standard error of estimate of the actual values. Similarly,
about 95% of the data fall within two standard deviations of the mean,
and about 95% of the estimates fall within two standard errors of estimate
of the actual values. Reversing these last statements, we find that about
two-thirds of the actual values lie within a band running from a standard
error of estimate above the regression line to a standard error of estimate
below it, 95% lie within the _2 SE band, and so forth. Thus, referring
to Figure 8, our best estimate of the sleeve inseam of a USAFflyer who
is 180 centimeters tall is about 49.3 centimeters, the regression value,
and the chances are about two out of three that the inseam measurementis
somewherebetween 47.5 and 51.1 centimeters since SE = 1.8 cm.

Y
The standard error of estimate, like the regression value, has a

second important identity: the standard error is both a measureof the
accuracy of a single estimate and, at the sametime, the standard deviation
for Y of all individuals with a fixed X-value. The regression value is
both our best estimate of Y for an individual with a specified value of
X and the meanvalue of Y for these individuals. Thus, we can say both:

a. for an individual with a stature of 180 centimeters, our best
estimate of his sleeve inseam is 49.3 cm and there are two chances
in three that this estimate will be in error by no more than
1.8 cm; and

b. for the group of menwith statures of 180 centimeters, the mean
sleeve inseam is 49.3 cmand the standard deviation is 1.8 cm.

The relationship between the standard error of estimate and the corre-
lation coefficient is further illustrated by the following:

r r____ r

0.00

0 .I0

0.20

0.30

100% SD 0.40 91.T% SD 0.80 60.0% SD

99.5% SD 0.50 86.6% SD 0.90 43.6% SD

98.0% SD 0.60 80._ SD 0.95 31.2% SD

95.4% SD 0.70 71.4% SD 0.99 14.1% SD

Regression Equations

The regression equation has already been more or less defined as
the equation or formula for estimating one variable's value from that of

a related variable. Tacitly we have assumed that this equation was linear

in nature; that is, that its graph is a straight line, and that our equation

is the "best" possible. These are universal assumptions when working with

anthropometric data.
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A useful way of writing the formula for the regression equation for
Y in terms of X is this:

m

Y*-Y X-X
- r --

SD SD
y x

The equation, written in this form, points up the statement about the esti-

mates "regressing" to the means. If X is "K" standard deviations from its

mean, the estimate Y* will be K.r standard deviations from its mean. Since

r cannot exceed unity, and in any practical situation never equals it,

K. r will always be less--in absolute value--than K and in standard deviation

units, Y* will be closer to _, than X is to _. In our earlier statement

that the regression estimate of the weight of a man who was 2SD above the

mean in stature would be about ISD above mean weight, we used 0.5 as the

approximate correlation between stature and weight, a fairly good estimate

of the correlation found for many series of data obtained by measuring

healthy, youngish adults.

A more conventional form of the regression equation--one absolutely

algebraically equivalent to the one just given--is:

Y* =_X+ _ where _ =rSDy/SDx; B = Y - _

The value of _ , the coefficient of X, is the slope of the regression line;

B is, in theory, the Y-intercept of the line, that is, the value of Y*

for X=0. We have qualified this last phrase with "in theory" because the

range of values for which we may reasonably assume the regression line to be

valid does not exceed the range of the data on which it is based.

USAF flying personnel measured in 1967 ranged in stature from about 62"

to 77"; no attempt should be made to use regression equations based on

the data from these men with values of stature outside this range. In addi-

tion, one should expect regression estimates to be less accurate when based

on values near the ends of the range than those based on values close to

average.

The computation of regression equations, based on this last formula,

is illustrated in Figure 7. Needless to say, the calculations based on

a sample of five are intended to illustrate a formula and not to suggest

that it is appropriate to use correlational techniques with very small

samples.

Intercorrelations of Body Size Data--High or Low?

How big correlation coefficients for anthropometric variables tend

to be is a question without a precise answer. While the correlational coef-

ficients obtained from a particular set of data will depend somewhat on

the individuals measured, they will depend even more on the measurements

included in the data. The "typical" coefficient for a survey in which only

a few major dimensions were measured will, almost certainly, be much higher

than the "typical" value for a major survey in which a large number of

major and minor dimensions were measured.
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One of the most comprehensive analyses of a large batch of anthropome-
tric correlations appears in Anthropometry of Air Force Women (Clauser et al.

1972). It may be of interest to consider the results of this analysis

since it is reasonable to assume that these results are, in broad terms,

about the same as those we would find by studying data from other large

survey s •

The distribution of the 7,626 correlation coefficients based on age

and the 123 body size measurements made on the entire sample in the Air

Force Women's survey is surmnarized in Table 8 and Figure 9. Several things

are clear from Figure 9. The size of the correlation coefficients ranges

from rather small, negative values almost to a perfect correlation of 1.00.

Most of the values are positive; if we ignore the values which are not

significantly different from zero (the shaded area in Figure 9), there

are almost no negative values. Despite this wide range, most of the

correlation coefficients lie between 0.I and 0.4, values which may sometimes

be of interest but which are of almost no significance in design problems.

The most common (model) correlation coefficient is equal to a little more

than 0.2, corresponding to a rather trivial level of intercorrelation.

To explore the question of how the correlation coefficients are dis-

tributed when the variables involved are of a particular type, the 124

variables involved in this analysis were divided into 9 categories: (i)

age, (2) weight; (3) skinfold measurements; (4) heights (excluding lateral

malleolus height), reaches, and long bone measurements; (5) torso breadths

and depths; (6) torso (including neck) circumferences and horizontal surface

measurements; (7) limb breadths and circumferences; (8) hand and foot

measurements (including lateral malleolus height); and (9) head and face

mea sur ement s •

Table 8 shows the distributions obtained when the variables are divided

into these categories. Section I of this table presents essentially the

same information as is contained in Figure 9: the range of the correlation

coefficients is from a minimum of -0.21 to a maximum 1.00" with a median

of 0.24. Section II summarizes the patterns, by category, for the correla-

tions of all the variables with the variables in each of the nine categories.

Only the correlations with weight show a pattern of values distinctly higher

than the pattern for the total distribution. The median value for the corre-

lations with weight is 0.50, but for none of the eight other categories

were as many as 25% of the correlations that large.

Section III carries the process of breaking down the distribution

one step further and considers, at each step, only those correlations involv-

ing variables from a specified pair of categories. Of the 37 sets of coeffi-

*Lest this value be regarded as a refutation of the statement made several

times in this chapter that the correlation coefficient is never +i.00

in any realistic situation, we note that this value is really 0.998. As

it is the correlation between stature measured two ways, its large size

is not surprising.
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TABLE 8

DISTRIBUTION OF CORRELATION COEFFICIENTS BY VARIABLES, GROUPS OF VARIABLES, AND ENTIRE GROUP

(from Anthropometry of Air Force Women by Clauser et al., 1972)

1. TotaX Series Sun_aery

Percentiles

.I___. _ _5 I__0_0 2_./_5 _ 7__#_5 9o 95 99 ____
-.21 -.02 .05 .08 .15 .24 .39 .62 .73 .88 1.00 7626

II. Major Groups S,-maries

Group

1. Age -.08 -.02 .00 .05 .12 .19 .28 .29 0.33 123
2. Weisht 0.08 .17 .22 .31 .50 .74 .80 .82 0.90 123
3. Skinfnlds -.10 -.07 -.02 .00 .04 .12 .36 .56 .61 .68 0.72 486

4. Heights -.21 -.05 -.04 .09 .16 .25 .36 .58 .72 .90 1.OO 3531
5. Breadths -.08 .04 .08 .12 .19 .29 .49 .66 .72 .84 0.89 1298
6. Circumferences -.10 .03 .08 .11 .19 .30 .47 .65 .73 .84 0.94 2166

7. Ll -h O's & B's -.06 .03 .08 .12 .19 .31 .45 .64 .72 .81 0.98 2270

8. Hand & Foot -.07 .00 .06 .10 .18 .26 .35 .46 .57 .68 0.74 723

9. Head & Face -.14 -.02 .03 .06 .11 .16 .23 .28 .31 .62 0.95 3161

IIio Cross Group Statuaries

1 & 4 .00 .05 .08 33

1 & 5 .23 II
I & 6 .23 19

I & 7 .15 20
1 & 9 .O7 .09 .14 29

2 & 4 .41 .46 .53 33

2 & 5 .77 11
2 & 6 .79 19

2 & 7 .78 20

2 & 9 .19 .26 .30 29
3 & 4 -.08 -.03 -.01 .02 .05 .10 .18 .22 0.29 132

3 & 5 .36 .47 .57 /.4

3 & 6 .16 .26 .37 .54 .61 76

3 & 7 .20 .28 .41 .54 .63 80

3 & 8 .04 .05 .08 24

3 & 9 -.10 -.03 -.02 .01 .05 .10 .16 .21 0.27 116

4 & 4 -.21 -.09 .16 .25 .39 .63 .75 .87 .91 .97 1.OO 528
4 & 5 -.08 .08 .13 .18 .24 .31 .38 .42 0.59 363

4 & b -.10 .06 .11 .15 .20 .27 .35 .44 .53 .70 0.82 627

4 & 7 -.O6 .01 .08 .U .18 .29 .35 .42 .45 .49 0.59 660

4 & 8 0.01 .16 .21 .29 .34 .46 .bO .66 0.70 198
4 & 9 -.13 -.05 .03 .07 .12 .17 .22 .27 .29 .33 0.36 957

5 & 5 .31 .50 .59 .67 .71 55

5 & 6 0.09 .26 .33 .44 .56 .69 .76 .83 0.89 209

5 & 7 0.25 .29 .31 .37 .50 .64 .70 .72 0.84 220

5 & 8 .11 .19 .23 .30 .35 66

5 & 9 -.02 .05 .07 .11 .17 .22 .26 .29 0.35 319
6 & 6 0.07 .21 .29 .44 .54 .66 .79 .83 0.96 171

6 & 7 0.11 .23 .29 .37 .48 .62 .73 .76 0.89 380

6 & 8 0.08 .12 .13 .19 .26 .32 .36 .40 0.69 114
6 & 9 -.03 .00 .04 .07 .10 .16 .22 .27 .30 .33 0.37 531

7 & 7 0.33 .37 .39 .43 .54 .69 .80 .92 0.98 190
7 a 8 0.07 .11 .17 .23 .32 .39 .49 .55 0.71 120

7 & 9 0.00 .03 .06 .08 .12 .17 .23 .26 .29 .32 0.36 580

8 & 8 .47 15
8 & 9 -.04 .05 .08 .13 .19 .23 .28 .31 0.40 17&

9 a 9 -.14 .01 .04 .I0 .16 .30 .53 .78 0.95 606
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cients with more than I0 values, only the following nine had median values

of at least 0.50:

weight and breadths-depths

weight and circumferences

weight and limb circumferences-breadths

heights and heights

breadths-depths and breadths-depths

breadths-depths and circumferences

breadths-depths and limb circumferences-

breadths

circumferences and circumferences

limb circumferences-breadths and limb circum-

ferences-breadths

median r = 0.77

median r = 0.79

median r = 0.78

median r = 0.63

median r = 0.59

median r = 0.56

median r = 0.50

median r = 0.54

median r = 0.54

Five other groups almost reached the 0.50 level: weight and heights (0.46),

skinfolds and breadths-depths (0.47), skinfolds and circumferences (0.47),

circumferences and limb circumferences-breadths (0.48), and hand-foot mea-

surements and hand-foot measurements (0.47).

This breakdown has demonstrated that there are a few categories of

body size measurements for which the correlation coefficients are, typi-

cally, of at least modest size. It also demonstrates that the overall dis-

tribution of correlations is weighted heavily towards the low end of the

scale by large numbers of correlations which would rarely, if ever, be

of any importance. Over a third of the correlation coefficients, for exam-

ple, are correlations between measurements of the head and face and mea-

surements of other parts of the body. That these 2,755 correlations have

a median value of 0.16 is probably of no importance in any real design

problem. On the other hand, the fact that the correlation coefficients

for one head-face measurement with another also have a median value of

0.16 presents serious problems in the design of helmets and masks.

Interrelationships--More than Two Variables at a Time

The regression equation concept--that of estimating values of one

variable from values of a second--is easily extended to the concept of

the multiple regression equation. Using such an equation, we can estimate

a man's weight from his height and his chest circumference, or from his

height and his head, shoulder, chest, waist, and buttock circumferences,

or from any other combination of two, three, four, or more variables. The

quality of these estimates, as measured by their agreement with actual

values, can be expressed in terms of the multiple correlation coefficient

and the multiple standard error of estimate, statistics absolutely equiva-

lent* to the simple correlation coefficient and the simple standard error

of estimate.

*The multiple correlation coefficient is always considered to be positive.
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All these multivariate statistics can be computeddirectly from the
simple correlation coefficients and the means and standard deviations;
we shall limit our display of formulas here to the inclusion in Figure
7 of the formula for the correlation between one variable and a pair of
other variables. Other formulas are included in Churchill et al. (1977);
many examples of multiple regression equations for body size measurements
are given in the report of the Air Force Women'ssurvey.

When we use a multiple regression equation based on a pair of
variables, our input into the equation contains more information than whenwe
use a simple equation based on either member of the pair. With more
information we should get more accurate estimates and, as a matter of fact,
we do. The multiple correlation of, say Z with X and Y will always be larger
than both the simple correlations of Z with X and Z with Y. Unfortunately,
the multiple correlation will often be only trivially larger than the larger
of the two simple correlations. This is all too true with body size corre-
lations. It is commonlyassumed, for example, that the multiple regression
equations based on stature and weight provide good estimates of most anthro-
pometric measurements. While this is, in large measure, true, it is also
true that most of the time these estimates are not muchbetter than those
obtained from the better of two simple equations. In the 1968 Air Force
Women's data, for example, for 121 measurements, the multiple correlation
coefficient based on stature and weight provided an improvementover the
simple equations (based on either stature or weight) of no more than 0.01
for about half the measurement and an improvementof from 0.01 to 0.02
for 27 measurements. For only 35 of the measurementsdid the increase exceed
0.02. A typical case was that for thumb-tip reach which correlated 0.433
with weight and 0.646 with stature; the multiple correlation with weight
and stature, 0.655, represented only a minor increase.

A relatively new approach to multiple regression is worth mentioning
briefly--"stepwise" regression equations. This is a technique which became
practical only with the advent of the modern computer. A matrix of correla-
tion coefficients is entered into the computer which then computes for
each variable the best equation based on a single other variable, then
the best equation based on two variables, and so on for as manyequations
as are desired. The results obtained by applying this approach to a set
of survey data are often interesting. Applied blindly, however, this tech-
nique is not likely to satisfy the hope of those who expect it to identify
a small group of variables on which to base equations for estimating all
the other variables. The resulting equations are, unfortunately, all too
likely to use a substantial portion, if not almost all, of the variables.
The 121 one-predictor equations for the 1968Air Force Women'sdata used
well over half that manypredictors, the two-predictor equations used about
i00 different variables, and the three-predictor ones all but half a dozen
of the variables. About a dozen two-variable combinations were "best" for
predicting two variables apiece, but none was best for more than two. None-
theless, this approach would seem to have potential usefulness in the
analysis of body size interrelationships, and references to it appear from
time to time in anthropometric literature.
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A Mathematical Model for Body Size Data

There are at least two fairly cormnon ways of determining the circum-

ference of a bicycle wheel: first, we can measure it directly; secondly,

we can measure the distance from the center of the axle to the edge of

the wheel and multiply the result by 27. When we use this second method,

we use the circle as a mathematical model for the wheel and make use of

the fact that, for this model, C=2_R.

In working with anthropometric data, we often have a similar choice

of procedures. We can measure some statistical value directly or we can

estimate it indirectly using a mathematical model appropriate to such data.

For most body size data, the most appropriate model is the normal distribu-

tion, the "normal curve," (see, for example, Figure 2). Just as there

are circles of many sizes, so too there are an infinite number of normal

distributions corresponding to all possible values of the mean and the

standard deviation.*

No set of data fits this model perfectly, but then, there has'never

been a perfectly round bicycle wheel. Sometimes neither model may be ade-

quately close to the real thing: subscapular skinf01d measurements and

wheels with flat tires are, perhaps, somewhat equivalent examples of this.

Most body size measurements, on the other hand, fit our mathematical model

within usual design tolerances and over the usual range of design values;

both these reservations are real--and also realistic. The proportion of

USAF pilots between X + ISD values in stature is, according to

the tables of the normal distribution, 68.26_/o; in more reasonable and

more realistic words, we can expect about two-thirds of the pilots to fall

in this range. For most designs, the two-thirds is likely to be adequate

and accurate; the use of 68.26_%, in contrast, will probably make as much

sense as using 3.14159265 for _ in determining the circumference of the

wheel.

Virtually all men have statures within 3 or 3.5 standard deviations

of the mean value; only an occasional individual will fall outside this

range and what his stature will be and, relatively speaking, how many such

individuals exist in any group of men, are matters too erratic for close

*The mathematical statement of the normal distribution is that, in a popu-

lation of values with a mean of M and a standard deviation of SD, the

proportion of values less than any value X 0 is given by the integral:

[X° _ (t-M_ 2

I | e- 2_ SD ) dt
P (X_<X o )

SD_-_ |.__

where H = 3.14 .... and e = 2.78 .... have their usual meanings. The value

of the integral cannot be expressed as a simple function of X o but tables

of the integral are legion. This integral is closely related to, but not

quite the same as, the error function (ERF) sometimes used in engineering

studies.
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prediction. The number of men in a group the size of the USAFflying
personnel sample (N=2,420) more than 4 standard deviations above the meanin
stature (or any other measurement) is, on the basis of the normal distribu-
tion, just about one. In practice, we're likely to find one, or two, or three
men this tall--or, quite often, none at all. Nomatter what the actual
number is, our mathematical model has indicated, quite accurately, that
there are so few men in this "tail" of the distribution that only a most
unusual design plan need concern itself with them.

The importance of a mathematical model is not only its usefulness
in providing an alternative to direct computation for determining statisti-
cal values, but also in the help it provides in generalizing about statis-
tical problems and in developing approaches to their solutions. The mathe-
matical model at times also makes it possible to determine statistical
values which cannof be determined directly or to provide such values in
a form not possible by direct computation. This is true, of course, not
only of the normal distribution model for body size (and manyother types
of data) but for other models (binomial distribution, Poisson distribution,
hypergeometric distribution, etc.) more appropriate to other types of sta-
tistical data.

Percentiles and Related Values

One of the most important applications of the normal distribution

model has already been mentioned several times in this chapter--the estima-

tion of percentiles and similar values in terms of the mean and standard

deviations, and the estimation of the proportions of a set of data which

lie within specified ranges. Tables 2, 5 and 6 are based directly on the

evaluation of the integral of the normal distribution.

The Bivariate and Multivariate Models

The mathematical model of the normal distribution for a single anthro-

pometric variable can be extended easily--and with reservations similar

to those already noted--to the joint distribution of two or more body size

measurements. While the model for a single variable is determined by match-

ing model and actuality in terms of a mean and standard deviation, in the

two-variable case, the matching is done in terms of five statistics: the

two means, the two standard deviations, and the correlation coefficient.

The model can be extended to any number of variables, depending in each

case on the means and standard deviations of the variables involved plus

all their correlation coefficients. The mathematics involved in using this

model becomes somewhat complex as the number of variables increases, but

computer programs are available for a variety of uses of the two- and three-

variable forms and for some uses involving essentially any number of vari-

ables.*

*Formulas for, and related to, these models are included in Churchill et

al. (1977). Relevant computer programs will be included in Computer Programs
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We shall discuss three uses of the bivariate normal distribution
model: the construction of equal probability ellipses, the construction
of artificial bivariate tables, and the determination of proportions disac-
commodatedby two-variable designs.

Equal Probability Ellipses

The concept of the equal probability ellipse can be approached by

considering a design range defined by a pair of complementary percentiles,

say, the 5th and the 95th. The range of values between these percentiles

has two important characteristics:

(i) a specified proportion (i.e., 90?°) of the data lies in this

range, and

(2) every value within the range has a higher probability than every

value outside it.

Combined, these two characteristics add up to the fact that the 5th-95th

percentile range is the shortest range containing 9_% of the data.

The extension of these concepts to the two-variable case leads to

the notion of the equal probability ellipse, as shown in Figure 10. These

ellipses have been constructed so that, like the 5th-95th percentile range:

(i) 90% of the pairs of values lie inside the ellipse,

(2) every point inside the ellipse corresponds to a higher probability

(or relative frequency) than every point outside the ellipse,

and, consequently,

(3) the interior of the ellipse is the smallest region (as mea-

sured in SD units) containing 90% of the data.

It is not particularly clear how one would use an ellipse in estab-

lishing design limits for a piece of equipment or clothing. Nonetheless,

these ellipses are useful in indicating the major distribution of the data

for a pair of variables. When data for two or more groups of individuals

must be considered in a single design program, the appropriate ellipses

for the several groups, drawn on a single graph, may help to indicate the

nature of the problems involved; Figures i0 and ii, for example, illustrate

well how differently different types of anthropometric measurements for

women relate to the same measurements for men.

It may be worth noting in passing how a 90% constant-probability

ellipse differs from the rectangle whose sides correspond to the 5th and

95th percentiles for the two variables involved. First, the relative fre-

quency of the individuals who fall in such a rectangle, i.e., the indivi-

duals who are within the 5th-95th percentile range on both variables, is

for Anthropometric and Statistically Similar Data by Churchill, Kikta,

and Churchill (in preparation) and can be obtained from Webb Associates, Box

308, Yellow Springs, Ohio 45387.

IX-40



I I I w I

+

! ! I I I ! ! l

mD 'IHgI3H 9NIIIIS

B_

O

IO0

O
mOO

E

I'--

B',D

Q

mt/'_

Q
B _')

Q;

,IJ
:M

_0

4o

o_
,H
0_

o_
=

,14

4-J
-H

o
u_

Q)

_:_
,H

a)

-H
,--I
-H

O
I-4

._J

¢J

Q)
>

,1-1
u_

I

,H
Z

,H

IX-41



il e I ! I

+

+

I I I I

m_ 'HIOV3_8 dlH

! I I I

Lc_
0

¢J
"0

0
--C:)

ch

"0

4-I
.C
b_

oO

0

cO

u_ -r4

bJ -,,4

W. ur_

0

o

_J
;4

,dn

(I}

m i::
'_ °r.I

o ,4

IX- 42



almost certainly not 90%. For variables with almost zero correlations--

face length and face breadth, for example--the rectangle will contain only

about 81% of the data. The higher the correlation--its sign is irrelevant

--the higher the percentage within the rectangle, with 90% corresponding

only to a perfect correlations Second, the rectangle will include, in its

lower right and upper left corners, if the variables are positively

correlated, some relatively atypical individuals--the 6'1" pilot who weighs

140 pounds and the 5'6" one who weighs 210 pounds, for example--while

excluding much more likely individuals, such as a 6'1" pilot who weighs 215

pounds. This problem probably cannot be avoided if rectangular design limits

must be used. The question of how to obtain rectangular design limits which

include a specified proportion of the data will be addressed below.

Artificial Bivariate Tables

A bivariate table, like those pictured in Figure 6 is made by recording

the number of individuals whose values for a pair of variables fall within

specified limits. What we have called artificial bivariate tables (see

Figure 12) are made by computing such numbers on the basis of the bivariate

normal frequency distribution. The problem is akin to that of determining,

in the one-variable case, the proportion of the data between two values, but

differs from it in that, because of the number of parameters involved,

concise, easily usable tables for constructing artificial bivariate tables do

not exist. However, these bivariate tables are easily and quickly computed.*

The artificial bivariate tables have a number of things to recommend

them over the conventional tables. The former are much more available than

the latter since only the means, standard deviations, and correlation coeffi-

cients are required to construct them. The correlation source book of Chur-

chill et al. (1977) contains all the information needed to create artifi-

cial bivariate tables for every pair of variables measured in each of

the seven surveys covered there--a number of tables well in excess of 50,000.

In contrast, few conventional bivariate tables have been published for these

data. Some 500 such tables appear in Anthropometry of Air Force Women by

Clauser et al. (1972) and about I00 in a report of the 1946 survey of women

separatingfrom the U.S. Army (Randall and Munroe, 1949). Conventional tables

for all pairs of variables can, of course, be computed from the raw data,

but this requires access to these data plus considerably more computer time

than do the artificial bivariates.

Since the artificial bivariate tables are based on the summary statis-

tics rather than the raw data, they are independent of the units in which

the data were measured. For example, instead of a stature-weight table with

stature in centimeters and weight in pounds--a combination of units pleasing

to nobody but almost universal for U.S. data--an artificial bivariate table

can be in inches and pounds or in centimeters and kilograms or in any mul-

*See previous footnote about the availability of appropriate programs.
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_ _ _ _ Total

1 8 6 1 16

4 42 53 I0 109

89 170 43 1 308

205 76 3 359

53 4 172

1 33

3

184 352 293 107 17 1 i000

Artificial bivariate table for buttock-knee and

buttock-popliteal lengths (USAF'67 data).
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tiple or fraction of these units, with any derived choice of intervals,

and with whatever total frequency count is preferred.

A third advantage is that the bivariate normal distribution tends

to smooth the data, and the frequencies in adjacent cells form more or less

reasonable patterns. Even with survey samples of several thousands or more,

rather irregular patterns which make no biological sense often occur, parti-

cularly around the perimeter of a conventional table. The regularities of

the artificial bivariate tables can, however, also gloss over irregularities

which are real and which do make biological sense. In the use of these tables

we must take into account the possibility of this occurrence. This often

happens when one of the pairs of variables is weight because of the asymmetry

of its distribution. More serious problems may arise when using data based

on a group which consists of two or more subgroups which have major anthropo-

metric differences. It would be unwise, for example, to compute an artificial

bivariate table for weight and stature for a group consisting of equal

numbers of basic trainees and of senior officers, or a table of sitting

heights and crotch heights for a group consisting of substantially equal

numbers of Blacks, Whites, and Orientals. If such tables are needed, it

might make considerable sense to create artificial bivariate tables separate-

ly for each subgroup and then combine the computed frequencies. The use

of our model, and the computer, makes the creation of such tables a simple

matter.

Proportions Disaccommodated by Two-Variable Designs

Equipment and workspace units are frequently designed to functionally

fit all potential users except for a small number of individuals who are

too small (or too large) in one or the other or both of two bodily

dimensions. The number of potential users who will be disaccommodated by such

a design depends not only on the number who are disaccomm_dated on each of

the design dimensions but also on the correlation between these dimensions.

If, for example, i_/o of the potential users are disaccommodated on each

dimension, the total proportion disaccommodated can be as low as 10% or as

high as 207°. By one more use of our bivariate mathematical model, we can

estimate the proportion of potential users who will be left out by a

specified design. We can equally well determine pairs of design limits which

will exclude a specified proportion of the potential users. (See Figure 13)

The shaded areas in Figure 13 illustrate six different types of design

patterns in which the disaccomodated potential users will be:

Type A - individuals who are too small in either dimension.

Type B - individuals who are too large in either dimension.

Type C - individuals who are too large in one dimension or too small

in the other.

Type D - individuals who are either too large or too small in either

dimension.
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Figure 13. Proportions disaccommodated: six types

of two-variable design patterns.
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Type E - individuals who are either too large or too small in one

dimension or who are too large in the other.

Type F - individuals who are either too large or too small in one

dimension or who are too small in the other.

From a statistical point of view, types A and B are equivalent and

so are types E and F; we shall, as a consequence, concern ourselves with

types A, C, D, and E.

In each case, the problem is the number of persons in the corner box or

boxes--those, that is, who are out of range on both dimensions. If the two

design dimensions are positively correlated, and we shall assume here that

they are, few individuals will be in the lower right-hand corner box or

in the upper left-hand one. Type C can, therefore, be easily taken care

of. If, for example, a design requires that users not exceed some value in

sitting height and that they not fall below some value in arm reach, it will

be a rare individual who is out-of-range on both variables. In this case,

then, the proportion of potential users disaccommodated will be essentially

just the number disaccommodated on sitting height plus the number disaccom-

modated on arm reach.

For type A designs, the number of individuals in the left-hand column

of Figure 12, Py_ and the number in the row at the base of the figure, Px'

are, we presume, either known or can be estimated using Table 2. The number

in the corner, P.., usually must be calculated using a computer program
_y

such as the artificial bivariate table or one similar to it. The total number

disaccormnodated will be given by

p -- p +P -P .
total x y xy

The eye height, sitting, values for USAF flyers are M = 31.87, SD

= 1.19; the design limit of 30.0" is thus (31.87-30.0)/1.19 or 1.57 standard

deviations below the mean. From Table 2, we estimate that 5._/o of the flyers

fall below the prescribed limit.

Similarly, the thumb-tip reach values are M=31.62, SD=1.57; the design

limit of 29.5" is thus (31.62-29.5)/1.57 or 1.35 standard deviations below

the mean. Again from Table 2, we obtain 8.9/° as an estimate of the propor-

tion of flyers with arms that are too short. The value of P..T, unfortunately,

is not so easily obtained since an appropriate table for determining it

is not only not available, but would be cumbersome to use if it were. How-

ever, by specifying 1.57, 1.35, 0.392 (the correlation between the two dimen-

sions) in the proper computer program, we find that Pxy 1.6%, and,

Total disaccon=nodated = P + P - P = 5._/o + 8._/o - 1.6% = 13.1%
x y xy

The type D design can be considered, with reasonable accuracy, as

a combined type A and type B design. The number disaccommodated will be

essentially the sum of those who exceed one or the other (or both) of the

upper limits and of those who fall below one or the other (or both) of the
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lower limits; the error in this computation will be represented by the rare
individuals who are above the upper limit in one dimension and below the
lower limit on the other.

Finally, similar reasoning suggests that a type E design be treated
as a type B design, plus the strip at the left of the box.

The reverse problem, that of selecting design limits to provide a
specified level of accomodation, while more complex mathematically, is
easily handled on a computer. Figure 14 showsthe output of one computer
program which provides for a Type A design, 5%, I_/o and 207°disaccomodated
design limits for eye height, sitting and thumb tip reach. Any pair of val-
ues from the proper curve will serve as appropriate design limits. Thus,
for example, a design which will accomodatemenwho are not over 33.5" in
eye height, sitting or over 34.8" in thumb-tip reach is likely to disaccom-
odate about 10% of the USAFflying personnel. The samewill be true of de-
signs based on eye height, sitting and thumb-tip reaches of 34.0" and 33.9",
of 35.0" and 33.7", of 35.5" and 33.6", etc.

The problem of selecting rectangular design limits which contain a
specified proportion of a set of data can be handled by using the computer
program which created Figure 14 twice. An initial run of this program would
supply a choice of lower limits which would exclude KI% of the data, and
a second computer run would provide a choice of upper limits designed to
exclude K2 % of the data. The rectangle defined by any pair of lower limits
and any pair of upper limits will include at least (100-KI-K2)% of the data.
While the values of KI and K2 may be equal in manyproblems, nothing in
this approach requires that they be equal.

It may be appropriate to end this discussion of the bivariate normal
model with the explicit recognition that it is the moderncomputer which
has madethis model the useful tool it is. Without a computer, most applica-
tions of this model would require the awkwardand laborious use of cumbersome
tables; what the computer will do well in seconds, it would take hours to
do poorly without it.

Sampling Errors

In 1967 the Air Force measured a sample of 2,420 men. Had this survey

been carried out a few months earlier or a year later or had a different

choice of air bases been made, the sample would have been made up of a some-

what different group of men, a little taller, perhaps, or a bit shorter,

somewhat heavier or somewhat lighter. Like the sample that was measured, this

hypothetical group would differ in a multitude of ways from the total USAF

flying personnel population.

All data collected on samples are subject to sampling error and we

cannot, therefore, expect them to represent the population precisely. Paren-

thetically, we may observe that complete precision is impossible even with

I0_ sampling; by the time data from a 100% survey of Air Force pilots could

be analyzed, and long before such data would be used, the population of
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pilots would already have changed. In addition, the population the design

engineer wishes our statistics to describe is usually a population which

does not yet exist--pilots or astronauts who will fly or use or wear equip-

ment still years from the production line. Nonetheless, reasonably accurate,

useful data can be obtained from samples; this handbook is based on just

such data.

Sampling errors arise in the anthropometric surveys from a number

of sources; the magnitude of errors from each source is, in the main, all

but impossible to evaluate. Military body size surveys are not based on

random or "probability" sampling, types of sampling which yield solid esti-

mates of the sampling errors. On the other hand, conscious efforts are usu-

ally made to sample a broad spectrum of the population--senior pilots and

student navigators, crew members of huge, multi-engine cargo planes and

those of much smaller fighters, and so forth. Usually, too, data from vari-

ous segments of the population can be studied to determine whether signifi-

cant differences exist among these segments. If important differences are

found, separate statistics can be provided for individual subgroups and

the statistics for the total group can be adjusted to compensate for sample-

population differences in background variables. Various aspects of sample-

population matching and of sampling errors are discussed at length in Sam_-

ling and Data Gathering Strategies for Future USAF Anthropometry, by Chur-

chill and McConville (1976).

One important component of sampling error is that due to the more-

or-less random aspect of the sampling process. This component is directly

related to sample size and can be easily evaluated in a probability sense.

For most sample statistics, one can compute a statistic known as the stan-

dard error which depends on the nature of the statistic, the size of the

sample, and, as a rule, the variability of the data, and can be written

in the form

SE S
= K- SD /_CN--

where the value of K depends on the statistic involved. For the mean, K=I.0;

for the standard deviation, K=0.707; for the percentiles, K runs from 1.3

for the 50th percentile, to 2.1 for the 5th and 95th percentiles, and 3.7

for the ist and 99th. ones. For combinations Qf the mean and standard
deviation, such as M + A SD, the value of K is _I+ A2/2 .

The standard errors of the basic summary statistics are thus directly

proportional to the standard deviation* and inversely proportional to the

square root of the sample size. Because of the inverse relationship with

the sample size, the standard error for any of these statistics can be made

as small as desired by increasing the sample size. However, since the sample

size enters this formula as its square root, an increase to four times the

original sample size is needed to cut the standard error in half and a nine-

fold increase is required to reduce it to one-third.

*Theoretically, the population SD; however, for samples of 50 or more the dis-

tribution is trivial.
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In Table 9 we have listed for illustrative purposes a few numerical
examples: the standard errors of the mean, standard deviation, and a few
percentiles for weight, stature, waist circumference, and foot length for
samples of 50, i00, 250, 500, 1,000, and 2,000. In preparing this table we
have used standard deviations for the USAF'67 flying personnel survey,
but the values from most of the other surveys would give about the same
results.

The standard error is a standard deviation type statistic. It does
not tell us, of course, what the error is in any instance. If it did, we
could use this information to convert the computedvalue into an errorless
one. Rather it enables us to establish probability bounds for the random
sampling errors: about 2/3 of the time the error will be less than _i SE;
about 95% of the time the error will be less then +2 SE; almost never will
the error be more than +3 SE. The term "confidence limit" is given to bands
established by adding to and subtracting from a statistic certain multiples
of its standard error. The range from 1.96 standard errors below to 1.96
standard errors above a sample statistic constitutes a "95% confidence limit"
the range based on 2.58 standard errors, a "9_/o confidence limit," and so
forth.*

From the values in Table 9, it is quite clear that random sampling
errors are fairly small for samples of 1,000 or more but can be of consider-
able size for the small samples--30 or so--which are often used in experi-
mental studies. For example, the 95%confidence limits for the 5th percentile
of stature for the USAF'67 flying personnel data are from about 68.8"-0.2"
to 68.8"+0.2", while the sameconfidence limits for a sampleof 30 menwould
extend from about 2" below the samplemeanto 2" above it.

Churchill and McConville (1976) have suggested that samplesof 350 will
usually be large enoughto provide design values of adequate accuracy, and
that samples of 250 will generally suffice if certain control processes are
used. An essential part of their analysis was the selection of criteria for
judging what constituted adequate accuracy. Their conclusions about the
adequacy of samples of 350 and 250 were based, in part, on the assumption
that 5th and 95th percentile values of height measurementsneed not be known
with greater relative precision than the diurnal variations in stature and
that circumferential measurements need not be knownwith greater relative
precision than the cyclic variation in chest circumfernece. It is likely that
other criteria based on realistic design factors would have led to similar
results.

The random
coefficient and
just discussed.

sampling errors of two major statistics, the correlation
the range, do not follow the pattern of the standard errors
The sampling error for the correlation coefficient, like

*Appropriate multiples for other confidence limits can be obtained from
Table 5. Note, however, that the constant for 90%confidence limits, for
example, is that for the 95th percentiles, and not that for the 10th and
90th.
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TABLE9
TYPICALSTANDARDERRORS

SAMPLESIZE
50 I00 250 500 i000 2000

Weight (Ibs)
Mean 3.03 2.14 1.36 0.96 0.68 0.48
Std. Dev. 2.14 1.51 0.96 0.68 0.48 0.34
5th/95th%ile 6.37 4.50 2.85 2.01 1.42 1.01
ist/99th%ile 11.22 7.93 5.02 3.56 2.51 1.78

Stature (c/n)
Mean 0.35 0.24 0.15 0.ii 0.08 0.05
Std. Dev. 0.24 0.17 0.ii 0.08 0.05 0.04
5th/95th%ile 0.72 0.51 0.32 0.22 0.16 0.ii
Ist/99th%ile 1.28 0.90 0.57 0.41 0.29 0.20

Waist Circumference (cm)

Mean 0.41 0.29 0.18 0.13 0.09 0.07

Std. Dev. 0.29 0.21 0.13 0.09 0.07 0.05

5th/95th%ile 0.86 0.61 0.39 0.27 0.19 0.14

Ist/99th%ile 1.52 1.08 0.68 0.48 0.34 0.24

Foot Length (cm)

Mean 0.07 0.05 0.03 0.02 0.01 0.01

Std. Dev. 0.05 0.03 0.02 0.01 0.01 0.01

5th/95th%ile 0.14 0. i0 0.06 0.04 0.03 0.02

ist/99th%ile 0.25 0.18 0.ii 0.08 0.05 0.04

Based on the USAF '67 standard deviations: for weight, 21.44 Ibs; for stature,

2.44 cm; for waist circumference, 2.91 cm; for foot length, 0.47 cm.
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that for the mean, varies inversely with the square root of the sample size,
but does not depend on the standard deviation. Rather, this error depends
on the correlation itself in a somewhatcomplex fashion. The confidence
limits do not as a rule extend equally above and below the sample correlation
coefficient. This nonsymmetry is minor for samples of several thousand,
but becomes substantial when the sample size is small and the correlation
coefficient large. Tables and formulas for determining confidence limits
for correlation coefficients are given by Churchill et al. (1977). The
following values illustrate the 95% confidence limits for correlation
coefficients for the USAF'67 flying personnel and 1968Air Force Women's
surveys:

r AFW '68 FLY '67

0.0 qq3.045 +0.040

0.2 -.004,+.043 - .030 ,+.029

0.3 -.041,+.040 -.028,+.028

0.4 -.038,+.037 -.034,+.033

0.5 -.034,+.032 -.030,+.029

0.6 -.030,+.027 -.026,+.024

r AFW '68 FLY ' 67

0.70 - .024,+.022 -.021,+.019

0.75 -.020,+.018 - .018,+.016

0.80 -.017,+.015 -.017,+.013

0.85 -.013,+.011 -.011,+.010

0.90 -.009,+.007 -.008,+.006

0.95 -.005,+.003 -.004,+.003

Thus, for example, the 95% confidence limits for a correlation coef-

ficient whose sample value was 0.600 would be from 0.570 to 0.627, if based

on a sample of 1,905, or from 0.574 to 0.624 if based on a sample of 2,420.

Ninety-nine percent limits in these cases would be from 0.561 to 0.636 and

from 0.565 to 0.633.

The sample range has a standard error which decreases quite slowly

as the sample size increases, much more slowly than, for example, the stan-

dard error of the mean. The large standard error which the range has, even

for rather large samples, is one of the many reasons that the range is usu-

ally judged a poor statistic for all but the smallest of samples (N<20).

One final standard error--that of a proportion--does not appear to

follow the basic formula although it is in fact equivalent to the standard

error of the mean. For a proportion P, the standard error is

SEp = _P'(I-P)/N .

For values of P from 30% to 70%, this error is roughly equal to 0.5/_'-N.

The non-random sampling errors present in our data cannot, as a rule,

be evaluated by any set of mathematical formulas. Extensive compilations

of data, such as that given in Volume II, do provide a basis for some evalu-

ation of these errors. Each user of these data will probably wish to make

such evaluations in his own way, and we limit ourselves to a pair of

illustrations of one approach.
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One source of error is the failure of a sample to properly correspond
to the population in terms of background variables. Onemight question,
for example, whether the sample in the USAF'67 survey accurately reflects
the division between students and rated officers, or between pilots and
navigators, and, if the sample is faulty in either of these respects, to
what extent are the body size statistics affected. BecauseVolumeII contains
detailed statistics in this case not only for the entire samplebut for
the four relevant subgroups as well, we can estimate the changes in the
total group statistics that shifts in the sample composition would make.
On checking the values for stature, for example, we find that only one of
the subgroup means--that for the rather small (N=188) group of student navi-
gators--differs from the total group meanby muchmore than0.15 ''. From this
perhaps we can conclude that, for stature at least, errors of this type
in the sample composition are not likely to be significant errors. Wemight
also be willing to assumethat the samething is done for comparable surveys,
statistics such as the RAF2,000 mansurvey, for which subgroup data are
not available.

Differences in measuring techniques are, of course, a major source
of differences in the statistical summaries. Unfortunately, differences
in measuring techniques may be present even whenpublished descriptions
of the techniques agree. Again, the wealth of material in Volume II will
often provide a basis for judging the comparability of measurementtech-
niques. Onemight, for example, comparethe statistics of major measurements
on the basis of the statures and weights, the statistics for head and face
measurementson the basis of head breadths and head lengths, and so forth, in
two surveys. The following numbers are the result of one such comparison
based on the USAF'67 flying personnel survey data and the data given by Bol-
ton (1973) for the Royal Air Force 2,000-man survey:

Crotch Chest Waist
Weight Stature He_ht Circ. Circ.

RAF 165 69.9 33.6 38.3 33.7

USAF 174 69.8 33.5 38.8 33.5

If we can assume the weight and stature means to be correct, we would

expect that mean values for other heights would be about the same, but that

USAF circumferences would be a bit larger than the RAF ones. The crotch

height and chest circumference mean values clearly follow this pattern;

those £or waist circumference do not. This last result is not surprising,

however, since according to the RAF survey report (Bolton et al., 1973)

the technique that the British used to measure waist circumference was quite

different from that used in the USAF survey.

Comparison of all the statistics for a single dimension will also

provide some clues as to the likely reliability of the measurements and

the consistency of the measurement techniques. The wide range of mean values

for interscye, maximum, for example, would suggest--and correctly so--that

this measurement is quite sensitive to small differences in measurement

technique and subject position. Much more typical than interscye maximum

are the many dimensions for which the statistics show, in the main, only
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small and logical patterns of differences. The data for these dimensions are

ones in which we can put considerable confidence.

Little, Average, and Big Men and Women: 5th, 50th, and 95th Percentiles

With the growing acceptance of the need to design for small and large

individuals as well as for those of average size, the practice has arisen of

designating small, average and large men and women as 5th percentile, 50th

percentile and 95th percentile men or women. To the extent that these terms

imply individuals who are 5th, 50th or 95th percentiles in all dimensions*,

there are statistical problems with the concept of the "percentile

individual." This is particularly true when the concept is applied to anthro-

pometric dummies, head and body forms, and to other items in which a

multiplicity of dimensions must be integrated.

The 50th percentile man and woman differs from other percentile men and

women in that they are statistically possible, if rather improbable.

Actually, even for this to be true we need to equate the 50th percentile with

the mean value. We note in Table I0, for example, that the mean value for

waist height (39.5") of Air Force women, plus the mean value for the vertical

distance from waist level to vertex (24.3") is equal to the mean value of
their statures (63.8").

TABLE I0

SELECTED STATISTICS FOR STATURE AND FLOOR-TO-WAIST AND

WAIST-TO-VERTEX HEIGHTS (AFW '68 DATA)

Mean 5%ile 95%ile X-I.65SD X+I.65SD

Stature 63.8" 60.0" 67.8" 59.9" 67.6"

Waist height 39.5" 36.6" 42.5" 36.6" 42.4"
Waist to

vertex 24.3" 22.7" 26.1" 22.6" 26.0"

SUMS (63.8") (59.3") (68.6") (59.2") (68.4")

Stature could be further segmented: the distance from floor to ankle, from

ankle to calf, from calf to knee and so forth. No matter how this segmenta-

tion is carried out, the sum of the mean values of the segment lengths of the

50th percentile person will inevitably add to the mean value of stature (see

Table ii). Similarly, we can expect that a man who is of average value in

height and all of his breadths, depths, and circumferences, will also be of

average weight.**

*Hertzberg (1970) defines an anthropometric dummy as one which "...closely

approximates a given percentile level of the human body in size, form, seg-

ment mobility, total weight, segment weight, (and) weight distribution."

**Even with the mean values there is a minor problem: mean values for indices

and shape variables are not as a rule equal to the indices computed from the

mean values of the dimensions, but the differences are usually trivial. For

example, the mean value for the sitting height/stature ratio (AFW '68 data)

is 52.82%; the ratio of mean sitting height (85.60 cm) to mean stature

(162.10 cm) is 52.81%.
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This, however, is not the case if we consider percentile values other

than the 50th. Except for the 50th percentile, no percentile man can possibly

exist. The essence of the problem with other "percentile men", the 5th, 95th,

and so forth, is that, as illustrated in Table i0, percentiles (other than

the 50th) for segments do not add to the corresponding percentile for the

sum of the parts. A set of segments, all 5th percentile, will add to less

than the 5th percentile for the total; the 95th percentiles of the segments

will, in turn, exceed the 95th percentile of the total. The problem is not

that a man cannot be 5th percentile in crotch height and sitting height but

that if he is, he isn't 5th percentile in stature. In Table i0, we note that

the sum of the 5th percentiles for waist height (36.6") and waist level to

vertex (22.7") is 59.3". This sum is 0.7" less than the 5th percentile for

stature and approximately equal to stature's 2nd percentile. Similarly the

two 95th percentiles add to 68.6", a value close to the 98th percentile for

stature.

The exact way in which these percentiles have been computed has nothing

to do with the heart of the problem nor has our choice of the 5th and the

95th percentiles. We can change our approach slightly and use values of the

mean minus 1.65 standard deviations to define our 5th percentile man and

values of the mean plus 1.65 standard deviations for the 95th percentile

man. But such a change changes little or nothing, as the last two columns

of Table i0 show. Just as the percentiles of the parts don't add to the corre-

sponding percentile of the whole, the standard deviations of the parts--here

they are 1.77" for waist height, and 1.04" for waist level to vertex--don't
add to the standard deviation of the whole--2.36" for stature. The man who

is 1.65 standard deviations above average on these two segments of stature

simply does not end up 1.65 standard deviations above average in stature.

When we divide stature into more than two segments, the differences

are even larger. In Table ii, are the 5th and 95th percentiles and mean

values for 14 vertical distances which together constitute stature computed

on the same 1968 Air Force Women's data. As was to be expected, the mean

values for these segments add exactly to the mean value for stature (162.10

cm or 63.8"); the sums of the percentiles, on the other hand, differ

drastically from the corresponding percentiles for stature. The sum of the

5th percentiles is a tiny 48.6"--almost a full foot less than the 5th

percentile for stature and about 8" less than the height of the shortest

woman measured in the AFW '68 survey. Similarly, the sum of the 95th

percentiles, 79.6", is almost a foot above the 95th percentile and about 8"

more than the height of the tallest survey subject.

These results are not unique to our choice of illustrative data. Rather

they are a direct consequence of the fact that the standard deviation of

a sum is given by the formula:*

*This formula is similar to the one for the length of the 3rd side of a tri-

angle with r being related to the angle between the two known sides; the

3rd side is always less than the sum of the other two except in the abnormal

case in which the triangle degenerates into a line segment.
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SDx+y = _(SDx )2 + 2r SDxSDy + (SDy) 2

where r is the correlation coefficient for X and Y. Only if r = 1.00 will

SDx+y = SD x + SDy, otherwise the standard deviation of the sum is less than

the sum of the standard deviations of the parts. Since, in practice, the

correlation coefficient is always less than 1.00, the results will be similar

to our illustrative case. The formula for the sum of three or more parts

is similar to that for two parts; the standard deviation of the total will

be equal to the sum of the separate standard deviations only if all the rele-

vant correlation coefficients are equal to 1.00.

Not only don't percentile values for a set of linear segments add to

the percentile value of the total, but the percentile values for interrelated

dimensions in a cross section of the body do not as a rule mesh together

and can lead to distorted shapes. Cross section areas of normal shape based

on 95th percentile breadths and depths will as a rule exceed the 95th percen-

tile in area; a man consistently 95th percentile in breadths, depths, and

heights will unquestionably be abnormally heavy, a man consistently 5th per-

centile abnormally light.

An analysis of the problems of achieving percentile values for "fo_m"

will be omitted here, in part because most statistical measures of form

yield ambiguous definitions of large and small. It is not unusual that

an individual could be both 5th percentile and 95th percentile on the basis

of logically equivalent definitions of the same shape measure. For example,

a USAF woman with a head breadth of 6" and a head length of 7" is about 95th

percentile on the head breadth-head length (cephalic) index; she is also

about 5th percentile on the head length-head breadth index. Traditionally,

it is true, anthropologists have divided head breadthby head length, but

this practice is quite arbitrary.

This non-existence of all percentile men except the 50th is a problem

relating basically to anthropometric dummies and coordinated body forms.

Exceedingly useful "large" test dummies, "small" head forms, and the like

can, of course, be constructed. The design of such dummies and forms,

however, will have to be based on a perceptive awareness of the way the

multiplicity of body dimensions interrelate and the statistical principles

which describe these relationships. It is, in addition, highly likely that

there will need to be an awareness that there are many "types" of large men,

and that, for different uses, body forms will need to be based on different

designs. Some of the matters relevant to .this problem are discussed by

McConville and Churchill (1976).

The design of equipment which must accommodate big men or small men

is quite different from attempting to create a body form which corresponds

to equivalent percentile values in all dimensions. No theoretical limitations

usually exist to rule out designs which will simultaneously accommodate men

who are 95th percentile in one dimension, others who are 95th percentile

in a second dimension, and still others who are 95th percentile in a third

dimension. Such designs require only the proper anthropometric data and,

all too often, considerable amounts of insight and ingenuity.
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The Monte Carlo Method

Some statistical problems which are awkward to solve directly can be

tackled by what has come to be known as the Monte Carlo Method. While it

has rarely been used in dealing with anthropometric data, we conclude this

chapter with a brief description and illustration of this method in the hope

that its potential value in helping with design problems will not be ignored.

The typical Monte Carlo type problem is one which asks the question:

If we do something by some random method, what are the probabilities of some

particular set of outcomes? The essence of the method is to actually "do"

the same thing a great many times, usually with the aid of random numbers

and a computer, and observe the outcomes. The relative frequency of each

outcome is then considered as an approximation to its probability. Such an

approach can be used with problems so complex that few alternative approaches

exist; it is also a practical solution to many less complex problems for

which feasible, but laborious or time consuming alternatives, are available.

As an illustration of the Monte Carlo method, we consider a problem

of picking crews consisting of five members each. The members of each crew

are to be selected randomly from a population similar to the USAF 1967 flying

personnel group with the restriction that no man over 5'8" tall or weighing

more than 165 Ibs will be accepted. The questions to be answered are:

(i) What is the distribution of total crew weights? and

(2) What is the distribution of the maximum stature in each crew?

To answer these questions, the statures and weights of the 2,420 sub-

jects in the 1967 survey sample were stored in the computer. By the use of

random numbers, subjects were selected until five satisfying the height and

weight limitations were obtained. The total weight of these men was then

computed and the height of the tallest man noted. The process was continued

until samples of I00, 200, 500, and 1,000 "crews" were obtained. The results
are surm_arized in Tables 12 and 13.

In using this method, we presumably select samples until the results

show a stable pattern. The entries in Tables 12 and 13 for 1,000 trials are

not very differenn from those for 500 trials. In fact, the general

distribution suggested by the results of i00 trials is rather similar to that

for 1,000. Median values, for example, for total crew weight and maximum

stature, are about 752 pounds and 172.1 cm (67.8") for each number of trials.

The procedure just described was based on using actual survey data,

but the availability of these data is not essential. We could have had re-

course once again to the bivariate normal distribution as a mathematical

model for the statures and weights, constructed an approximation to the sta-

ture-weight distribution,* and sampled it just as we sampled the actual

*This could be done in a variety of ways. One method, for example, could

be based on the artificial bivariate program. A second method could be based

on repeated selection of pairs of uncorrelated, normally distributed, random
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TABLE 12

DISTRIBUTION OF WEIGHTS OF FIVE-I_N CKEWS*

i00

NO. OF TRIALS

200 500 i000

(ib)
0.5% 1.2% 1.0%

800 & up
790 & up 2.0% 2.5% 3.6% 3.4%

780 & up 12.0% 11.5% 12.2% 11.6%

770 & up 22.0% 21.0% 22.0% 20.5%

760 & up 42.0% 39.5% 40.2% 35.9%

750 & up 55.0% 55.0% 55.4% 53.7%

740 & up 67.0% 67.0% 67.4% 68.3%

730 & up 78.0% 78.5% 79.2% 80.3%

720 & up 84.0% 85.5% 87.4% 88.9%

710 & up 87.0% 91.0% 93.6% 94.2%

700 & up 91.0% 94.5% 96.8% 97.3%

690 & up 97.0% 99.0% 99.2% 99.5%

680 & up 98.0% 99.5% 99.6% 99.8%

* See text for method of selection.

TABLE 13

DISTRIBUTION OF MAXIMUM STATURES OF FIVE-MAN CREWS*

NO. OF TRIALS

I00 200 500 I000

Stature (cm}

172.6 & up 15.0% 12.5% 10.2% 10.0%

172.4 & up 30.0% 30.0% 28.8% 27.1%

172.2 & up 48.0% 50.0% 46.0% 44.2%

172.0 & up 68.0% 67.5% 63.8% 61.3%

171.8 & up 75.0% 75.5% 73.8% 73.2%

171.6 & up 80.0% 79.5% 79.0% 79.4%

171.4 & up 88.0% 87.5% 85.2% 84.3%

171.2 & up 88.0% 88.5% 86.4% 86.2%

171.0 & up 92.0% 92.0% 90.2% 89.9%

170.8 & up 94.0% 94.0% 92.4% 92.5%

170.6 & up 94.0% 94.5% 93.6% 94.0%

170.4 & up 97.0% 96.5% 95.6% 96.2%

170.2 & up 97.0% 97.0% 96.6% 97.3%

* See text for method of selection.
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distribution. To do this, only the means and standard deviations plus the

correlation coefficient are needed.

s, X 1 and X 2 and then setting: stature = Xland weight = (X2-rXI)/

, where stature and weight are interpreted as being in standard devia-

tion units, and r is the correlation coefficient.
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